calpain activation
Recently Published Documents


TOTAL DOCUMENTS

238
(FIVE YEARS 22)

H-INDEX

49
(FIVE YEARS 2)

2022 ◽  
Vol 27 (1) ◽  
pp. 1
Author(s):  
Andrew Gao ◽  
Hannah M. McCoy ◽  
Vandana Zaman ◽  
Donald C. Shields ◽  
Naren L. Banik ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0245702
Author(s):  
Piyakarn Boontem ◽  
Tetsumori Yamashima

Background For their functions of insulin biosynthesis and glucose- and fatty acid- mediated insulin secretion, Langerhans β-cells require an intracellular milieu rich in oxygen. This requirement makes β-cells, with their constitutively low antioxidative defense, susceptible to the oxidative stress. Although much progress has been made in identifying its molecular basis in experimental systems, whether the oxidative stress due to excessive fatty acids plays a crucial role in the Langerhans cell degeneration in primates is still debated. Methods Focusing on Hsp70.1, which has dual functions as molecular chaperone and lysosomal stabilizer, the mechanism of lipotoxicity to Langerhans cells was studied using macaque monkeys after the consecutive injections of the lipid peroxidation product ‘hydroxynonenal’. Based on the ‘calpain-cathepsin hypothesis’ formulated in 1998, calpain activation, Hsp70.1 cleavage, and lysosomal integrity were studied by immunofluorescence histochemistry, electron microscopy, and Western blotting. Results Light microscopy showed more abundant vacuole formation in the hydroxynonenal-treated islet cells than the control cells. Electron microscopy showed that vacuolar changes, which were identified as enlarged rough ER, occurred mainly in β-cells followed by δ-cells. Intriguingly, both cell types showed a marked decrease in insulin and somatostatin granules. Furthermore, they exhibited marked increases in peroxisomes, autophagosomes/autolysosomes, lysosomal and peroxisomal membrane rupture/permeabilization, and mitochondrial degeneration. Disrupted peroxisomes were often localized in the close vicinity of degenerating mitochondria or autolysosomes. Immunofluorescence histochemical analysis showed an increased co-localization of activated μ-calpain and Hsp70.1 with the extralysosomal release of cathepsin B. Western blotting showed increases in μ-calpain activation, Hsp70.1 cleavage, and expression of the hydroxynonenal receptor GPR109A. Conclusions Taken together, these data implicate hydroxynonenal in both oxidation of Hsp70.1 and activation of μ-calpain. The calpain-mediated cleavage of the carbonylated Hsp70.1, may cause lysosomal membrane rupture/permeabilization. The low defense of primate Langerhans cells against hydroxynonenal and peroxisomally-generated hydrogen peroxide, was presumably overwhelmed to facilitate cell degeneration.


Biomedicines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 284
Author(s):  
Cheng-Wei Lu ◽  
Tzu-Yu Lin ◽  
Tai-Long Pan ◽  
Pei-Wen Wang ◽  
Kuan-Ming Chiu ◽  
...  

Cognitive impairment is not only associated with seizures but also reported as an adverse effect of antiepileptic drugs. Thus, new molecules that can ameliorate seizures and maintain satisfactory cognitive function should be developed. The antiepileptic potential of asiatic acid, a triterpene derived from the medicinal herb Centella asiatica, has already been demonstrated; however, its role in epilepsy-related cognitive deficits is yet to be determined. In this study, we evaluated the effects of asiatic acid on cognitive deficits in rats with kainic acid (KA)-induced seizure and explored the potential mechanisms underlying these effects. Our results revealed that asiatic acid administrated intraperitoneally 30 min prior to KA (15 mg/kg) injection ameliorated seizures and significantly improved KA-induced memory deficits, as demonstrated by the results of the Morris water maze test. In addition, asiatic acid ameliorated neuronal damage, inhibited calpain activation, and increased protein kinase B (AKT) activation in the hippocampus of KA-treated rats. Asiatic acid also increased the levels of synaptic proteins and the number of synaptic vesicles as well as attenuated mitochondrial morphology damage in the hippocampus of KA-treated rats. Furthermore, proteomic and Western blot analyses of hippocampal synaptosomes revealed that asiatic acid reversed KA-induced changes in mitochondria function-associated proteins, including lipoamide dehydrogenase, glutamate dehydrogenase 1 (GLUD1), ATP synthase (ATP5A), and mitochondrial deacetylase sirtuin-3 (SIRT3). Our data suggest that asiatic acid can prevent seizures and improve cognitive impairment in KA-treated rats by reducing hippocampal neuronal damage through the inhibition of calpain activation and the elevation of activated AKT, coupled with an increase in synaptic and mitochondrial function.


2021 ◽  
Author(s):  
Tetsumori Yamashima ◽  
Piyakarn Boontem

Background For their functions of insulin biosynthesis and glucose- and fatty acid- induced insulin secretion, the Langerhans β-cells require an intracellular milieu rich in oxygen. This requirement makes β-cells, with their constitutively low antioxidative defense, susceptible to the oxidative stress. Although much progress has been made in identifying its molecular basis in the experimental systems, whether the oxidative stress due to excessive fatty acids plays a crucial role in the Langerhans degeneration in primates is still debated. Methods Focusing on Hsp70.1, which has dual functions as a molecular chaperone and lysosomal stabilizer, the mechanism of lipotoxicity to the Langerhans islet cells was studied using Japanese macaque monkeys (Macaca fuscata) after the consecutive injections of the lipid peroxidation product hydroxynonenal. Based on the ‘calpain-cathepsin hypothesis’ of ischemic neuronal death formulated in 1998, calpain activation, Hsp70.1 cleavage, and lysosomal integrity were studied by immunofluorescence histochemistry, electron microscopy and Western blotting.  Results Light microscopy showed higher vacuole formation in the treated islet cells than in the control cells. Electron microscopy showed that vacuolar changes that were identified as enlarged rough endoplasmic reticula occurred mainly in β-cells followed by δ-cells. Intriguingly, both cell types showed a marked decrease in insulin and somatostatin granules. Furthermore, they exhibited marked increases in peroxisomes, autophagosomes/autolysosomes, lysosomal and peroxisomal membrane rupture/permeabilization, and mitochondrial degeneration. Disrupted peroxisomes were often localized in the close vicinity of degenerating mitochondria or autolysosomes. Immunofluorescence histochemical analysis showed an increased colocalization of activated µ-calpain and Hsp70.1 with the extralysosomal release of cathepsin B. Western blotting showed increases in µ-calpain activation, Hsp70.1 cleavage, and hydroxynonenal receptor GPR109A expression.  Conclusions Taken together, these data implicate hydroxynonenal in both the carbonylation of Hsp70.1 and the activation of µ-calpain. The calpain-mediated cleavage of the carbonyl group on Hsp70.1 after the hydroxynonenal-mediated carbonylation of Hsp70.1, may cause lysosomal membrane rupture/permeabilization. The low defense of primate Langerhans cells against exogenous hydroxynonenal and peroxisomally-generated hydrogen peroxide, was presumably overwhelmed to facilitate cell degeneration.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Aysel Cetinkaya-Fisgin ◽  
Xinghua Luan ◽  
Nicole Reed ◽  
Ye Eun Jeong ◽  
Byoung Chol Oh ◽  
...  

AbstractCisplatin is a commonly used chemotherapy agent with significant dose-limiting neurotoxicity resulting in peripheral neuropathy. Although it is postulated that formation of DNA-platinum adducts is responsible for both its cytotoxicity in cancer cells and side effects in neurons, downstream mechanisms that lead to distal axonal degeneration are unknown. Here we show that activation of calpains is required for both neurotoxicity and formation of DNA-platinum adduct formation in neurons but not in cancer cells. Furthermore, we show that neurotoxicity of cisplatin requires activation of Sarm1, a key regulator of Wallerian degeneration, as mice lacking the Sarm1 gene do not develop peripheral neuropathy as evaluated by both behavioral or pathological measures. These findings indicate that Sarm1 and/or specific calpain inhibitors could be developed to prevent cisplatin induced peripheral neuropathy.


Shock ◽  
2020 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Yifan Huang ◽  
Grace Wang ◽  
Tianqing Peng

2020 ◽  
Vol 295 (49) ◽  
pp. 16840-16851
Author(s):  
Liwen Liang ◽  
Huili Li ◽  
Ting Cao ◽  
Lina Qu ◽  
Lulu Zhang ◽  
...  

The human cardiovascular system has adapted to function optimally in Earth's 1G gravity, and microgravity conditions cause myocardial abnormalities, including atrophy and dysfunction. However, the underlying mechanisms linking microgravity and cardiac anomalies are incompletely understood. In this study, we investigated whether and how calpain activation promotes myocardial abnormalities under simulated microgravity conditions. Simulated microgravity was induced by tail suspension in mice with cardiomyocyte-specific deletion of Capns1, which disrupts activity and stability of calpain-1 and calpain-2, and their WT littermates. Tail suspension time-dependently reduced cardiomyocyte size, heart weight, and myocardial function in WT mice, and these changes were accompanied by calpain activation, NADPH oxidase activation, and oxidative stress in heart tissues. The effects of tail suspension were attenuated by deletion of Capns1. Notably, the protective effects of Capns1 deletion were associated with the prevention of phosphorylation of Ser-345 on p47phox and attenuation of ERK1/2 and p38 activation in hearts of tail-suspended mice. Using a rotary cell culture system, we simulated microgravity in cultured neonatal mouse cardiomyocytes and observed decreased total protein/DNA ratio and induced calpain activation, phosphorylation of Ser-345 on p47phox, and activation of ERK1/2 and p38, all of which were prevented by calpain inhibitor-III. Furthermore, inhibition of ERK1/2 or p38 attenuated phosphorylation of Ser-345 on p47phox in cardiomyocytes under simulated microgravity. This study demonstrates for the first time that calpain promotes NADPH oxidase activation and myocardial abnormalities under microgravity by facilitating p47phox phosphorylation via ERK1/2 and p38 pathways. Thus, calpain inhibition may be an effective therapeutic approach to reduce microgravity-induced myocardial abnormalities.


Sign in / Sign up

Export Citation Format

Share Document