scholarly journals R9AP targeting to rod outer segments is independent of rhodopsin and is guided by the SNARE homology domain

2014 ◽  
Vol 25 (17) ◽  
pp. 2644-2649 ◽  
Author(s):  
Jillian N. Pearring ◽  
Eric C. Lieu ◽  
Joan R. Winter ◽  
Sheila A. Baker ◽  
Vadim Y. Arshavsky

In vertebrate photoreceptor cells, rapid recovery from light excitation is dependent on the RGS9⋅Gβ5 GTPase-activating complex located in the light-sensitive outer segment organelle. RGS9⋅Gβ5 is tethered to the outer segment membranes by its membrane anchor, R9AP. Recent studies indicated that RGS9⋅Gβ5 possesses targeting information that excludes it from the outer segment and that this information is overridden by association with R9AP, which allows outer segment targeting of the entire complex. It was also proposed that R9AP itself does not contain specific targeting information and instead is delivered to the outer segment in the same post-Golgi vesicles as rhodopsin, because they are the most abundant transport vesicles in photoreceptor cells. In this study, we revisited this concept by analyzing R9AP targeting in rods of wild-type and rhodopsin-knockout mice. We found that the R9AP targeting mechanism does not require the presence of rhodopsin and further demonstrated that R9AP is actively targeted in rods by its SNARE homology domain.

1992 ◽  
Vol 103 (1) ◽  
pp. 157-166
Author(s):  
D.F. Matesic ◽  
N.J. Philp ◽  
J.M. Murray ◽  
P.A. Liebman

Bovine rod outer segment (ROS) preparations contain a major 58 kDa protein doublet that was identified by immunoblot as tubulin. Quantification by gel densitometry showed that the total amount of tubulin was 5- to 10-fold higher than that attributable to the rod axoneme, suggesting additional role(s) for tubulin in photoreceptor cells. Approximately 20% of this nonaxonemal tubulin (15% of total tubulin) is tightly associated with outer segment membranes. This fraction remains membrane-associated after extensive low- or high-salt washing, requiring detergents or protein denaturants for release from ROS membranes. Unlike ROS soluble tubulin it associates tightly with liposomes upon detergent solubilization and reconstitution. The ROS membrane-associated tubulin is highly enriched in isolated ROS plasma membrane fractions compared to the total outer segment membrane pool and can be localized to the plasma membrane but not to disks by immunofluorescent staining, suggesting a possible role in the structure or electrophysiology of the rod outer segment plasma membrane.


1992 ◽  
Vol 116 (3) ◽  
pp. 659-667 ◽  
Author(s):  
K Arikawa ◽  
L L Molday ◽  
R S Molday ◽  
D S Williams

The outer segments of vertebrate rod photoreceptor cells consist of an ordered stack of membrane disks, which, except for a few nascent disks at the base of the outer segment, is surrounded by a separate plasma membrane. Previous studies indicate that the protein, peripherin or peripherin/rds, is localized along the rim of mature disks of rod outer segments. A mutation in the gene for this protein has been reported to be responsible for retinal degeneration in the rds mouse. In the present study, we have shown by immunogold labeling of rat and ground squirrel retinas that peripherin/rds is present in the disk rims of cone outer segments as well as rod outer segments. Additionally, in the basal regions of rod and cone outer segments, where disk morphogenesis occurs, we have found that the distribution of peripherin/rds is restricted to a region that is adjacent to the cilium. Extension of its distribution from the cilium coincides with the formation of the disk rim. These results support the model of disk membrane morphogenesis that predicts rim formation to be a second stage of growth, after the first stage in which the ciliary plasma membrane evaginates to form open nascent disks. The results also indicate how the proteins of the outer segment plasma membrane and the disk membranes are sorted into their separate domains: different sets of proteins may be incorporated into membrane outgrowths during different growth stages of disk morphogenesis. Finally, the presence of peripherin/rds protein in both cone and rod outer segment disks, together with the phenotype of the rds mouse, which is characterized by the failure of both rod and cone outer segment formation, suggest that the same rds gene is expressed in both types of photoreceptor cells.


1996 ◽  
Vol 109 (7) ◽  
pp. 1803-1812
Author(s):  
M.A. Hallett ◽  
J.L. Delaat ◽  
K. Arikawa ◽  
C.L. Schlamp ◽  
F. Kong ◽  
...  

Guanylate cyclases play an essential role in the recovery of vertebrate photoreceptor cells after light activation. Here, we have investigated how one such guanylate cyclase, RetGC-1, is distributed within light- and dark-adapted rod photoreceptor cells. Guanylate cyclase activity partitioned with the photoreceptor outer segment (OS) cytoskeleton in a light-sensitive manner. RetGC-1 was found to bind actin filaments in actin blot overlays, suggesting a mechanism for its association with the OS cytoskeleton. In retinal sections, this enzyme was immunodetected only in the OSs, where it appeared to be distributed throughout the disk membranes.


1993 ◽  
Vol 106 (2) ◽  
pp. 671-683
Author(s):  
W. Hemmer ◽  
I. Riesinger ◽  
T. Wallimann ◽  
H.M. Eppenberger ◽  
A.F. Quest

Different isoforms of creatine kinase, an important enzyme of vertebrate energy metabolism, were localized in bovine photoreceptor cells, with particular emphasis on the identification and quantification of the brain-type isoform within the outer segment compartment. Using immunofluorescence and immunoelectron microscopy, brain-type creatine kinase was shown to be present in bovine photoreceptor cell outer and inner segments. The presence of this isoenzyme in rod outer segments was additionally confirmed by immunoblotting and immunolabeling of isolated rod outer segments. The content of creatine kinase in rod outer segments was quantified by measuring creatine kinase activity after membrane disruption with detergent. The ATP regeneration potential provided by the creatine kinase in isolated, washed bovine rod outer segments was 1.2 +/- (0.4) i.u. mg-1 rhodopsin. This value was calculated to be at least an order of magnitude larger than that necessary to replenish the energy required for cGMP resynthesis in rod outer segments, and high enough to regenerate the entire ATP pool of rod outer segments within the time span of a photic cycle. A mitochondrial creatine kinase isoenzyme was located within the ellipsoid portions of bovine rod and cone inner segments by immunofluorescence microscopy and, using immunogold staining, was specifically localized in the mitochondria clustered within bovine rod and cone inner segments. These results suggest that vertebrate photoreceptor cells contain a functional phosphocreatine circuit. Outer segment creatine kinase may play an important role in phototransduction by providing energy for the visual cycle, maintaining high local ATP/ADP ratios and consuming protons produced by enzymes located in the outer segment.


Author(s):  
Beth Burnside

The vertebrate photoreceptor provides a drammatic example of cell polarization. Specialized to carry out phototransduction at its distal end and to synapse with retinal interneurons at its proximal end, this long slender cell has a uniquely polarized morphology which is reflected in a similarly polarized cytoskeleton. Membranes bearing photopigment are localized in the outer segment, a modified sensory cilium. Sodium pumps which maintain the dark current critical to photosensory transduction are anchored along the inner segment plasma membrane between the outer segment and the nucleus.Proximal to the nucleus is a slender axon terminating in specialized invaginating synapses with other neurons of the retina. Though photoreceptor diameter is only 3-8u, its length from the tip of the outer segment to the synapse may be as great as 200μ. This peculiar linear cell morphology poses special logistical problems and has evoked interesting solutions for numerous cell functions. For example, the outer segment membranes turn over by means of a unique mechanism in which new disks are continuously added at the proximal base of the outer segment, while effete disks are discarded at the tip and phagocytosed by the retinal pigment epithelium. Outer segment proteins are synthesized in the Golgi near the nucleus and must be transported north through the inner segment to their sites of assembly into the outer segment, while synaptic proteins must be transported south through the axon to the synapse.The role of the cytoskeleton in photoreceptor motile processes is being intensely investigated in several laboratories.


2017 ◽  
Author(s):  
Yashodhan Chinchore ◽  
Tedi Begaj ◽  
David Wu ◽  
Eugene Drokhlyansky ◽  
Constance L. Cepko

Sensory neurons capture information from the environment and convert it into signals that can greatly impact the survival of an organism. These systems are thus under heavy selective pressure, including for the most efficient use of energy to support their sensitivity and efficiency1. In this regard, the vertebrate photoreceptor cells face a dual challenge. They not only need to preserve their membrane excitability via ion pumps by ATP hydrolysis2 but also maintain a highly membrane rich organelle, the outer segment, which is the primary site of phototransduction, creating a considerable biosynthetic demand. How photoreceptors manage carbon allocation to balance their catabolic and anabolic demands is poorly understood. One metabolic feature of the retina is its ability to convert the majority of its glucose into lactate3,4 even in the presence of oxygen. This phenomenon, aerobic glycolysis, is found in cancer and proliferating cells, and is thought to promote biomass buildup to sustain proliferation5,6. The purpose of aerobic glycolysis in the retina, its relevance to photoreceptor physiology, and its regulation, are not understood. Here, we show that rod photoreceptors rely on glycolysis for their outer segment (OS) biogenesis. Genetic perturbations targeting allostery or key regulatory nodes in the glycolytic pathway impacted the OS size. Fibroblast growth factor (FGF) signaling was found to regulate glycolysis, with antagonism of this pathway resulting in anabolic deficits. These data demonstrate the cell autonomous role of the glycolytic pathway in OS maintenance and provide evidence that aerobic glycolysis is part of a metabolic program that supports the biosynthetic needs of a normal neuronal cell type.


2019 ◽  
Vol 12 (3) ◽  
pp. 216-229 ◽  
Author(s):  
Yuan Wu ◽  
Xiudan Zheng ◽  
Yubo Ding ◽  
Min Zhou ◽  
Zhuang Wei ◽  
...  

Abstract Heat shock protein 90 (Hsp90) is an abundant molecular chaperone with two isoforms, Hsp90α and Hsp90β. Hsp90β deficiency causes embryonic lethality, whereas Hsp90α deficiency causes few abnormities except male sterility. In this paper, we reported that Hsp90α was exclusively expressed in the retina, testis, and brain. Its deficiency caused retinitis pigmentosa (RP), a disease leading to blindness. In Hsp90α-deficient mice, the retina was deteriorated and the outer segment of photoreceptor was deformed. Immunofluorescence staining and electron microscopic analysis revealed disintegrated Golgi and aberrant intersegmental vesicle transportation in Hsp90α-deficient photoreceptors. Proteomic analysis identified microtubule-associated protein 1B (MAP1B) as an Hsp90α-associated protein in photoreceptors. Hspα deficiency increased degradation of MAP1B by inducing its ubiquitination, causing α-tubulin deacetylation and microtubule destabilization. Furthermore, the treatment of wild-type mice with 17-DMAG, an Hsp90 inhibitor of geldanamycin derivative, induced the same retinal degeneration as Hsp90α deficiency. Taken together, the microtubule destabilization could be the underlying reason for Hsp90α deficiency-induced RP.


1984 ◽  
Vol 32 (8) ◽  
pp. 834-838 ◽  
Author(s):  
N D Das ◽  
R J Ulshafer ◽  
Z S Zam ◽  
V R Leverenz ◽  
H Shichi

Two monoclonal antibodies (RSA1/83 and RSA2/83) were developed against a homogeneous preparation of bovine retinal S-antigen. The two hybridomas produced by mouse X mouse hybrid myeloma cells secrete immunoglobulin G. Indirect autoradiography on glutaraldehyde-fixed preparations of bovine explants was used to locate the antigenic site. Antibody RSA1/83 recognizes the antigen primarily in the apical region of the rod outer segment, while antibody RSA2/83 located the antigen both in the outer and inner segments of the rod photoreceptor cells. A distinct band of silver grains also appeared along the inner limiting membrane with both antibodies. Control explants showed no specific labeling pattern over the various retinal compartments.


Sign in / Sign up

Export Citation Format

Share Document