scholarly journals SPAG4L/SPAG4Lβ interacts with Nesprin2 to participate in the meiosis of spermatogenesis

2019 ◽  
Vol 51 (7) ◽  
pp. 669-676 ◽  
Author(s):  
Xiaohua Li ◽  
Yong Wu ◽  
Lihua Huang ◽  
Linfei Yang ◽  
Xiaowei Xing

Abstract SUN domain proteins are identified as a novel family of nuclear envelope proteins which are involved in spermatogenesis. SPAG4L is identified as the fifth member of this family. Previous studies have revealed that SPAG4L is involved in spermatogenesis and the mutations occurring in SPAG4L will lead to male infertility. However, the transcriptions of SPAG4L and its interacting proteins in the testis are still unclear. In this study, we identified a shorter transcript variant of SPAG4L, named SPAG4Lβ, in human testis by northern blot and reverse transcription-polymerase chain reaction. Bioinformatics analysis showed that it encodes a protein consisting of 311 amino acids, and subcellular localization analysis revealed that it is mainly expressed in the cytoplasm. In situ hybridization and immunofluorescence assay revealed that SPAG4L/SPAG4Lβ is involved in meiosis. Furthermore, co-IP results demonstrated that SPAG4L/SPAG4Lβ interacts with Nesprin2, a KASH domain protein to form the LINC (linker of nucleoskeleton and cytoskeleton) complexes. Immunofluorescence results revealed that the LINC complexes of Spag4l/Nesprin2 in mouse are involved in spermatocyte division. Our data indicated that SPAG4L/SPAG4Lβ may play an important role in the meiotic process.

Author(s):  
G. W. Hacker ◽  
I. Zehbe ◽  
J. Hainfeld ◽  
A.-H. Graf ◽  
C. Hauser-Kronberger ◽  
...  

In situ hybridization (ISH) with biotin-labeled probes is increasingly used in histology, histopathology and molecular biology, to detect genetic nucleic acid sequences of interest, such as viruses, genetic alterations and peptide-/protein-encoding messenger RNA (mRNA). In situ polymerase chain reaction (PCR) (PCR in situ hybridization = PISH) and the new in situ self-sustained sequence replication-based amplification (3SR) method even allow the detection of single copies of DNA or RNA in cytological and histological material. However, there is a number of considerable problems with the in situ PCR methods available today: False positives due to mis-priming of DNA breakdown products contained in several types of cells causing non-specific incorporation of label in direct methods, and re-diffusion artefacts of amplicons into previously negative cells have been observed. To avoid these problems, super-sensitive ISH procedures can be used, and it is well known that the sensitivity and outcome of these methods partially depend on the detection system used.


2021 ◽  
Vol 54 (1) ◽  
Author(s):  
Martha Alicia Ballinas-Verdugo ◽  
Rogelio Frank Jiménez-Ortega ◽  
Eduardo Martínez-Martínez ◽  
Nancy Rivas ◽  
Erick Abraham Contreras-López ◽  
...  

Abstract Background Chagas disease is considered important and presents intense inflammatory and fibrotic processes induced by the perpetuation of the parasite in the affected tissues and organs. Therefore, it is necessary to inquire about the host defense and attack mechanisms to have a more detailed knowledge about Chagas disease. MicroRNAs are found in blood, tissues and extracellular vesicles. These small regulators of gene expression are involved in physiological and pathological processes in both mammals and parasites. Several microRNAs have deregulated expression in chagasic heart disease, although little is known about their extracellular expression. Our main objective was to evaluate the involvement of miR-21, miR-146a and miR-155 in several samples from mice infected with the TcI Ninoa strain from the acute and indeterminate phases. We also explored a potential functional association of the selected microRNAs using STRING software. This software identified 23 pathways associated with Trypanosoma cruzi infection. In addition, eleven genes were identified through bioinformatics analysis, and we found that SMAD family member 5 was downregulated in both phases. This gene serves as a mediator in the TGF-β signaling pathway. Thus, forty female mice of the CD1 strain were distributed into 4 groups and the expression levels of miR-21, miR-146a and miR-155 were measured in samples of heart tissue, total plasma and plasma extracellular vesicles by quantitative real-time polymerase chain reaction. Results Overexpression of miR-21, miR-146a and miR-155 was observed in heart and plasma in both phases. Moreover, in extracellular vesicles miR-21 and miR-146a were also overexpressed in the acute phase, whereas in the indeterminate chronic phase we found only miR-146a up-regulated. Conclusions The expression of inflammatory microRNAs miR-21, miR-146a and miR-155 were up-regulated in each of the samples from acutely and chronically infected mice. The relevant finding was that miR-146a was up-regulated in each sample in both phases; therefore, this miRNA could be a possible candidate biomarker in Chagas disease.


2005 ◽  
Vol 446 (2) ◽  
pp. 202-203 ◽  
Author(s):  
F. Alameda ◽  
L. Pijuan ◽  
L. Ferrer ◽  
M. L. Mari�oso ◽  
M. Muset ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document