Free Oscillations—One Degree of Freedom

Author(s):  
Mohammad Samiullah
Entropy ◽  
2019 ◽  
Vol 22 (1) ◽  
pp. 28 ◽  
Author(s):  
Azhar Ali Zafar ◽  
Grzegorz Kudra ◽  
Jan Awrejcewicz

In this article, we will solve the Bagley–Torvik equation by employing integral transform method. Caputo fractional derivative operator is used in the modeling of the equation. The obtained solution is expressed in terms of generalized G function. Further, we will compare the obtained results with other available results in the literature to validate their usefulness. Furthermore, examples are included to highlight the control of the fractional parameters on he dynamics of the model. Moreover, we use this equation in modelling of real free oscillations of a one-degree-of-freedom mechanical system composed of a cart connected with the springs to the support and moving via linear rolling bearing block along a rail.


1997 ◽  
Vol 2 (2) ◽  
pp. 186-191 ◽  
Author(s):  
William P. Dunlap ◽  
Leann Myers

1981 ◽  
Vol 134 (8) ◽  
pp. 675 ◽  
Author(s):  
S.V. Vorontsov ◽  
V.N. Zharkov

Author(s):  
Nguyen Cao Thang ◽  
Luu Xuan Hung

The paper presents a performance analysis of global-local mean square error criterion of stochastic linearization for some nonlinear oscillators. This criterion of stochastic linearization for nonlinear oscillators bases on dual conception to the local mean square error criterion (LOMSEC). The algorithm is generally built to multi degree of freedom (MDOF) nonlinear oscillators. Then, the performance analysis is carried out for two applications which comprise a rolling ship oscillation and two degree of freedom one. The improvement on accuracy of the proposed criterion has been shown in comparison with the conventional Gaussian equivalent linearization (GEL).


Sign in / Sign up

Export Citation Format

Share Document