The Enigmatic Enigma Illusion

Author(s):  
Kai Hamburger

As a visual illusion, the Enigma illusion is a pattern that in its original version consists of 120 black radial lines on a white background intercepted by three bicolored annuli and a central disk. The main illusory effect in the Enigma (leading to its name) occurs during fixation of the center of the static image. Then, quite intense streaming motion may be perceived on the different annuli. It is characterized by a traveling wave or some subtle motion on the annuli that may not be described in more detail by the observer. Sometimes the observers call it “a feeling of motion”. This perceived (illusory) motion can occur in either direction; clockwise or counterclockwise. This example shows that such illusions are an important means to psychophysically investigate human motion perception and its limits.

2020 ◽  
Vol 14 ◽  
Author(s):  
Junxiang Luo ◽  
Zheyuan Chen ◽  
Yiliang Lu ◽  
Lothar Spillmann ◽  
Ian Max Andolina ◽  
...  

In a pattern of horizontal lines containing ± 45° zigzagging phase-shifted strips, vivid illusory motion is perceived when the pattern is translated up or down at a moderate speed. Two forms of illusory motion are seen: [i] a motion “racing” along the diagonal interface between the strips and [ii] lateral (sideways) motion of the strip sections. We found the relative salience of these two illusory motions to be strongly influenced by the vertical spacing and length of the line gratings, and the period length of the zigzag strips. Both illusory motions are abolished when the abutting strips are interleaved, separated by a gap or when a real line is superimposed at the interface. Illusory motion is also severely weakened when equiluminant colored grating lines are used. Illusory motion perception is fully restored at < 20% luminance contrast. Using adaptation, we find that line-ends alone are insufficient for illusory motion perception, and that both physical carrier motion and line orientation are required. We finally test a classical spatiotemporal energy model of V1 cells that exhibit direction tuning changes that are consistent with the direction of illusory motion. Taking this data together, we constructed a new visual illusion and surmise its origin to interactions of spatial and temporal energy of the lines and line-ends preferentially driving the magnocellular pathway.


2000 ◽  
Vol 59 (2) ◽  
pp. 85-88 ◽  
Author(s):  
Rudolf Groner ◽  
Marina T. Groner ◽  
Kazuo Koga

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sichao Yang ◽  
Johannes Bill ◽  
Jan Drugowitsch ◽  
Samuel J. Gershman

AbstractMotion relations in visual scenes carry an abundance of behaviorally relevant information, but little is known about how humans identify the structure underlying a scene’s motion in the first place. We studied the computations governing human motion structure identification in two psychophysics experiments and found that perception of motion relations showed hallmarks of Bayesian structural inference. At the heart of our research lies a tractable task design that enabled us to reveal the signatures of probabilistic reasoning about latent structure. We found that a choice model based on the task’s Bayesian ideal observer accurately matched many facets of human structural inference, including task performance, perceptual error patterns, single-trial responses, participant-specific differences, and subjective decision confidence—especially, when motion scenes were ambiguous and when object motion was hierarchically nested within other moving reference frames. Our work can guide future neuroscience experiments to reveal the neural mechanisms underlying higher-level visual motion perception.


2005 ◽  
Vol 167 (4) ◽  
pp. 504-525 ◽  
Author(s):  
Igor Riečanský ◽  
Alexander Thiele ◽  
Claudia Distler ◽  
Klaus-Peter Hoffmann

Perception ◽  
1997 ◽  
Vol 26 (3) ◽  
pp. 269-275 ◽  
Author(s):  
Timothy J Andrews ◽  
Allison N McCoy

When rotating stripes or other periodic stimuli cross the retina at a critical rate, a reversal in the direction of motion of the stimuli is often seen. This illusion of motion perception was used to explore the roles of retinal and perceived motion in the generation of optokinetic nystagmus. Here we show that optokinetic nystagmus is disrupted during the perception of this illusion. Thus, when perceived and actual motion are in conflict, subjects fail to track the veridical movement. This observation suggests that the perception of motion can directly influence optokinetic nystagmus, even in the presence of a moving retinal image. A conflict in the neural representation of motion in different brain areas may explain these findings.


2011 ◽  
Vol 73 (6) ◽  
pp. 1823-1832 ◽  
Author(s):  
Erika Tomimatsu ◽  
Hiroyuki Ito ◽  
Shoji Sunaga ◽  
Gerard B. Remijn

Nature ◽  
1978 ◽  
Vol 275 (5675) ◽  
pp. 55-56 ◽  
Author(s):  
V. S. RAMACHANDRAN ◽  
R. L. GREGORY

2016 ◽  
Vol 116 (3) ◽  
pp. 1275-1285 ◽  
Author(s):  
Benjamin T. Crane

Thresholds and biases of human motion perception were determined for yaw rotation and sway (left-right) and surge (fore-aft) translation, independently and in combination. Stimuli were 1 Hz sinusoid in acceleration with a peak velocity of 14°/s or cm/s. Test stimuli were adjusted based on prior responses, whereas the distracting stimulus was constant. Seventeen human subjects between the ages of 20 and 83 completed the experiments and were divided into 2 groups: younger and older than 50. Both sway and surge translation thresholds significantly increased when combined with yaw rotation. Rotation thresholds were not significantly increased by the presence of translation. The presence of a yaw distractor significantly biased perception of sway translation, such that during 14°/s leftward rotation, the point of subjective equality (PSE) occurred with sway of 3.2 ± 0.7 (mean ± SE) cm/s to the right. Likewise, during 14°/s rightward motion, the PSE was with sway of 2.9 ± 0.7 cm/s to the left. A sway distractor did not bias rotation perception. When subjects were asked to report the direction of translation while varying the axis of yaw rotation, the PSE at which translation was equally likely to be perceived in either direction was 29 ± 11 cm anterior to the midline. These results demonstrated that rotation biased translation perception, such that it is minimized when rotating about an axis anterior to the head. Since the combination of translation and rotation during ambulation is consistent with an axis anterior to the head, this may reflect a mechanism by which movements outside the pattern that occurs during ambulation are perceived.


Author(s):  
Baingio Pinna

The Pinna illusion is the first case of visual illusion showing a rotating motion phenomenon. Squares, arranged in two concentric rings, show a strong counter-rotation effect. The inner ring of the squares appears to rotate counterclockwise and the outer ring clockwise when the observer’s head is slowly moved toward the figure while the gaze is kept fixed in the center of the stimulus pattern. The direction of rotation is reversed when the observer’s head moves away from the stimulus. The speed of the illusory rotation is proportional to the one of the motion imparted by the observer. While the way each individual check receives a local illusory motion signal can be explained by the response of direction-selective neurons at the earliest cortical stage of visual processing, the whole illusory rotational motion can be thought to be sensed by the higher cortical area, which collates all the signals provided by the local motion checks.


Sign in / Sign up

Export Citation Format

Share Document