Deep Learning Networks and Visual Perception

Author(s):  
Grace W. Lindsay ◽  
Thomas Serre

Deep learning is an approach to artificial intelligence (AI) centered on the training of deep artificial neural networks to perform complex tasks. Since the early 21st century, this approach has led to record-breaking advances in AI, allowing computers to solve complex board games, video games, natural language-processing tasks, and vision problems. Neuroscientists and psychologists have also utilized these networks as models of biological information processing to understand language, motor control, cognition, audition, and—most commonly—vision. Specifically, early feedforward network architectures were inspired by visual neuroscience and are used to model neural activity and human behavior. They also provide useful representations of the perceptual space of images. The extent to which these models match data, however, depends on the methods used to characterize and compare them. The limitations of these feedforward neural networks to account for, for example, simple visual reasoning tasks, suggests that feedback mechanisms may be necessary to solve visual recognition tasks beyond image categorization.

2021 ◽  
pp. 1-17
Author(s):  
Hania H. Farag ◽  
Lamiaa A. A. Said ◽  
Mohamed R. M. Rizk ◽  
Magdy Abd ElAzim Ahmed

COVID-19 has been considered as a global pandemic. Recently, researchers are using deep learning networks for medical diseases’ diagnosis. Some of these researches focuses on optimizing deep learning neural networks for enhancing the network accuracy. Optimizing the Convolutional Neural Network includes testing various networks which are obtained through manually configuring their hyperparameters, then the configuration with the highest accuracy is implemented. Each time a different database is used, a different combination of the hyperparameters is required. This paper introduces two COVID-19 diagnosing systems using both Residual Network and Xception Network optimized by random search in the purpose of finding optimal models that give better diagnosis rates for COVID-19. The proposed systems showed that hyperparameters tuning for the ResNet and the Xception Net using random search optimization give more accurate results than other techniques with accuracies 99.27536% and 100 % respectively. We can conclude that hyperparameters tuning using random search optimization for either the tuned Residual Network or the tuned Xception Network gives better accuracies than other techniques diagnosing COVID-19.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
J. M. Torres ◽  
R. M. Aguilar

Making every component of an electrical system work in unison is being made more challenging by the increasing number of renewable energies used, the electrical output of which is difficult to determine beforehand. In Spain, the daily electricity market opens with a 12-hour lead time, where the supply and demand expected for the following 24 hours are presented. When estimating the generation, energy sources like nuclear are highly stable, while peaking power plants can be run as necessary. Renewable energies, however, which should eventually replace peakers insofar as possible, are reliant on meteorological conditions. In this paper we propose using different deep-learning techniques and architectures to solve the problem of predicting wind generation in order to participate in the daily market, by making predictions 12 and 36 hours in advance. We develop and compare various estimators based on feedforward, convolutional, and recurrent neural networks. These estimators were trained and validated with data from a wind farm located on the island of Tenerife. We show that the best candidates for each type are more precise than the reference estimator and the polynomial regression currently used at the wind farm. We also conduct a sensitivity analysis to determine which estimator type is most robust to perturbations. An analysis of our findings shows that the most accurate and robust estimators are those based on feedforward neural networks with a SELU activation function and convolutional neural networks.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Shize Huang ◽  
Xiaowen Liu ◽  
Xiaolu Yang ◽  
Zhaoxin Zhang ◽  
Lingyu Yang

Trams have increasingly deployed object detectors to perceive running conditions, and deep learning networks have been widely adopted by those detectors. Growing neural networks have incurred severe attacks such as adversarial example attacks, imposing threats to tram safety. Only if adversarial attacks are studied thoroughly, researchers can come up with better defence methods against them. However, most existing methods of generating adversarial examples have been devoted to classification, and none of them target tram environment perception systems. In this paper, we propose an improved projected gradient descent (PGD) algorithm and an improved Carlini and Wagner (C&W) algorithm to generate adversarial examples against Faster R-CNN object detectors. Experiments verify that both algorithms can successfully conduct nontargeted and targeted white-box digital attacks when trams are running. We also compare the performance of the two methods, including attack effects, similarity to clean images, and the generating time. The results show that both algorithms can generate adversarial examples within 220 seconds, a much shorter time, without decrease of the success rate.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Daniel Pinto dos Santos ◽  
Sebastian Brodehl ◽  
Bettina Baeßler ◽  
Gordon Arnhold ◽  
Thomas Dratsch ◽  
...  

Abstract Background Data used for training of deep learning networks usually needs large amounts of accurate labels. These labels are usually extracted from reports using natural language processing or by time-consuming manual review. The aim of this study was therefore to develop and evaluate a workflow for using data from structured reports as labels to be used in a deep learning application. Materials and methods We included all plain anteriorposterior radiographs of the ankle for which structured reports were available. A workflow was designed and implemented where a script was used to automatically retrieve, convert, and anonymize the respective radiographs of cases where fractures were either present or absent from the institution’s picture archiving and communication system (PACS). These images were then used to retrain a pretrained deep convolutional neural network. Finally, performance was evaluated on a set of previously unseen radiographs. Results Once implemented and configured, completion of the whole workflow took under 1 h. A total of 157 structured reports were retrieved from the reporting platform. For all structured reports, corresponding radiographs were successfully retrieved from the PACS and fed into the training process. On an unseen validation subset, the model showed a satisfactory performance with an area under the curve of 0.850 (95% CI 0.634–1.000) for detection of fractures. Conclusion We demonstrate that data obtained from structured reports written in clinical routine can be used to successfully train deep learning algorithms. This highlights the potential role of structured reporting for the future of radiology, especially in the context of deep learning.


2021 ◽  
Vol 17 (9) ◽  
pp. e1009345
Author(s):  
Zhengqiao Zhao ◽  
Stephen Woloszynek ◽  
Felix Agbavor ◽  
Joshua Chang Mell ◽  
Bahrad A. Sokhansanj ◽  
...  

Recurrent neural networks with memory and attention mechanisms are widely used in natural language processing because they can capture short and long term sequential information for diverse tasks. We propose an integrated deep learning model for microbial DNA sequence data, which exploits convolutional neural networks, recurrent neural networks, and attention mechanisms to predict taxonomic classifications and sample-associated attributes, such as the relationship between the microbiome and host phenotype, on the read/sequence level. In this paper, we develop this novel deep learning approach and evaluate its application to amplicon sequences. We apply our approach to short DNA reads and full sequences of 16S ribosomal RNA (rRNA) marker genes, which identify the heterogeneity of a microbial community sample. We demonstrate that our implementation of a novel attention-based deep network architecture, Read2Pheno, achieves read-level phenotypic prediction. Training Read2Pheno models will encode sequences (reads) into dense, meaningful representations: learned embedded vectors output from the intermediate layer of the network model, which can provide biological insight when visualized. The attention layer of Read2Pheno models can also automatically identify nucleotide regions in reads/sequences which are particularly informative for classification. As such, this novel approach can avoid pre/post-processing and manual interpretation required with conventional approaches to microbiome sequence classification. We further show, as proof-of-concept, that aggregating read-level information can robustly predict microbial community properties, host phenotype, and taxonomic classification, with performance at least comparable to conventional approaches. An implementation of the attention-based deep learning network is available at https://github.com/EESI/sequence_attention (a python package) and https://github.com/EESI/seq2att (a command line tool).


Author(s):  
C. Swetha Reddy Et.al

Surprisingly comprehensive learning methods are implemented in many large learning machine data, such as visual recognition and visual language processing. Much of the success of advanced training in recent years is due to leadership training, which requires a set of information for specific tasks, before such training. However, in reality, selected tasks related to personal study are gradually accumulated over time as it is difficult to collect and submit training data manually. It provides a way to continue learning some information columns and examples of steps that are specific to the new class and called additional learning. In this post, we recommend the best machine training method for further training for deep neural networks. The basic idea is to learn a deep system with strong connections that can be "activated" or "turned off" at different stages. The approach you suggest allows you to reduce the distribution of old services as you learn new for example new training, which increases the effectiveness of training in the additional training phase. Experiments with MNIST and CIFAR-100 show that our approach can be implemented in other long-term phases in deep neuron models and achieve better results from zero-base training.


Author(s):  
Ankita Singh ◽  
◽  
Pawan Singh

The Classification of images is a paramount topic in artificial vision systems which have drawn a notable amount of interest over the past years. This field aims to classify an image, which is an input, based on its visual content. Currently, most people relied on hand-crafted features to describe an image in a particular way. Then, using classifiers that are learnable, such as random forest, and decision tree was applied to the extract features to come to a final decision. The problem arises when large numbers of photos are concerned. It becomes a too difficult problem to find features from them. This is one of the reasons that the deep neural network model has been introduced. Owing to the existence of Deep learning, it can become feasible to represent the hierarchical nature of features using a various number of layers and corresponding weight with them. The existing image classification methods have been gradually applied in real-world problems, but then there are various problems in its application processes, such as unsatisfactory effect and extremely low classification accuracy or then and weak adaptive ability. Models using deep learning concepts have robust learning ability, which combines the feature extraction and the process of classification into a whole which then completes an image classification task, which can improve the image classification accuracy effectively. Convolutional Neural Networks are a powerful deep neural network technique. These networks preserve the spatial structure of a problem and were built for object recognition tasks such as classifying an image into respective classes. Neural networks are much known because people are getting a state-of-the-art outcome on complex computer vision and natural language processing tasks. Convolutional neural networks have been extensively used.


2020 ◽  
Vol 27 (1) ◽  
pp. 48-61 ◽  
Author(s):  
Sergey V. Morzhov

The growth of popularity of online platforms which allow users to communicate with each other, share opinions about various events, and leave comments boosted the development of natural language processing algorithms. Tens of millions of messages per day are published by users of a particular social network need to be analyzed in real time for moderation in order to prevent the spread of various illegal or offensive information, threats and other types of toxic comments. Of course, such a large amount of information can be processed quite quickly only automatically. that is why there is a need to and a way to teach computers to “understand” a text written by humans. It is a non-trivial task even if the word “understand” here means only “to classify”. the rapid evolution of machine learning technologies has led to ubiquitous implementation of new algorithms. A lot of tasks, which for many years were considered almost impossible to solve, are now quite successfully solved using deep learning technologies. this article considers algorithms built using deep learning technologies and neural networks which can successfully solve the problem of detection and classification of toxic comments. In addition, the article presents the results of the developed algorithms, as well as the results of the ensemble of all considered algorithms on a large training set collected and tagged by Google and Jigsaw.


2021 ◽  
Author(s):  
Ghassan Mohammed Halawani

The main purpose of this project is to modify a convolutional neural network for image classification, based on a deep-learning framework. A transfer learning technique is used by the MATLAB interface to Alex-Net to train and modify the parameters in the last two fully connected layers of Alex-Net with a new dataset to perform classifications of thousands of images. First, the general common architecture of most neural networks and their benefits are presented. The mathematical models and the role of each part in the neural network are explained in detail. Second, different neural networks are studied in terms of architecture, application, and the working method to highlight the strengths and weaknesses of each of neural network. The final part conducts a detailed study on one of the most powerful deep-learning networks in image classification – i.e. the convolutional neural network – and how it can be modified to suit different classification tasks by using transfer learning technique in MATLAB.


2019 ◽  
Vol 3 (2) ◽  
pp. 31-40 ◽  
Author(s):  
Ahmed Shamsaldin ◽  
Polla Fattah ◽  
Tarik Rashid ◽  
Nawzad Al-Salihi

At present, deep learning is widely used in a broad range of arenas. A convolutional neural networks (CNN) is becoming the star of deep learning as it gives the best and most precise results when cracking real-world problems. In this work, a brief description of the applications of CNNs in two areas will be presented: First, in computer vision, generally, that is, scene labeling, face recognition, action recognition, and image classification; Second, in natural language processing, that is, the fields of speech recognition and text classification.


Sign in / Sign up

Export Citation Format

Share Document