Mass Erosion and Transport on Cometary Nuclei, as Found on 67P/Churyumov-Gerasimenko

Author(s):  
Wing-Huen Ip

The Rosetta spacecraft rendezvoused with comet 67P/Churyumov-Gerasimenko in 2014–2016 and observed its surface morphology and mass loss process. The large obliquity (52°) of the comet nucleus introduces many novel physical effects not known before. These include the ballistic transport of dust grains from the southern hemisphere to the northern hemisphere during the perihelion passage, thus shaping the dichotomy of two sides, with the northern hemisphere largely covered by dust layers from the recycled dusty materials (back fall) and the southern hemisphere consisting mostly of consolidated terrains. A significant amount of surface material up to 4–10 m in depth could be transferred across the nucleus surface in each orbit. New theories of the physical mechanisms driving the outgassing and dust ejection effects are being developed. There is a possible connection between the cometary dust grains and the fluffy aggregates and pebbles in the solar nebula in the framework of the streaming-instability scenario. The Rosetta mission thus succeeded in fulfilling one of its original scientific goals concerning the origin of comets and their relation to the formation of the solar system.

2021 ◽  
Author(s):  
A.Chantal Levasseur-Regourd ◽  
Edith Hadamcik ◽  
Jérémie Lasue ◽  
Julien Milli ◽  
Jean-Baptiste Renard

<p>The ESA-JAXA Comet Interceptor mission is expected to flyby a dynamically new comet (or an interstellar one) and better reveal the properties of its dust particles and nucleus surface. We therefore tentatively compare polarimetric properties of dust released by some comets, as well as present on surfaces of some small bodies.</p><p>Phase curves of the linear polarization of cometary dust particles (observed in equivalent wavelength ranges) show analogous trends. Some unique dynamically new comets or fragmenting comets (e.g. C/1995 O1 Hale-Bopp, C/1999 S4 LINEAR) may nevertheless present a higher positive branch than Halley-type or Jupiter-family comets (e.g. 1P/Halley, 67P/Churyumov-Gerasimenko). Such differences are clues to differences in the properties (sizes, morphologies, complex optical indices) of the dust particles. Dust particles, ejected by nuclei frequently plunging in the inner Solar System, might indeed partly come from quite dense a surface layer, as detected on the small lobe of comet 67P by Rosetta [1].</p><p>Although polarimetric observations of surfaces of cometary nuclei are almost impossible, observations of the rather quiescent nucleus of 1P/Encke have been obtained [2].  Similarities between polarimetric properties of 1P/Encke and atypical small bodies (e.g. Phaeton and particularly Bennu [3]), and of dust in cometary comae may be pointed out. Numerical and laboratory simulations could represent a unique tool to better understand such similarities. It may also be added that dust particles originating from comets, with emphasis on those of Jupiter-family, may survive atmospheric entry, as CP-IDPs collected in the Earth’s stratosphere, and that dust found in debris disks of stellar systems shows levels of polarization similar to those of highly-polarized comets [4].</p><p> </p><p>[1] Kofman et al., MNRAS, 497, 2616-2622, 2020, [2] Boehnhardt et al., A&A, 489, 1337-1343, 2008. [3] Cellino et al., MNRAS, 481, L49-L53, 2018. [4] Levasseur-Regourd et al., PSS, 186, 104896, 2020,</p><p> </p>


2000 ◽  
Vol 179 ◽  
pp. 387-388
Author(s):  
Gaetano Belvedere ◽  
V. V. Pipin ◽  
G. Rüdiger

Extended AbstractRecent numerical simulations lead to the result that turbulence is much more magnetically driven than believed. In particular the role ofmagnetic buoyancyappears quite important for the generation ofα-effect and angular momentum transport (Brandenburg & Schmitt 1998). We present results obtained for a turbulence field driven by a (given) Lorentz force in a non-stratified but rotating convection zone. The main result confirms the numerical findings of Brandenburg & Schmitt that in the northern hemisphere theα-effect and the kinetic helicityℋkin= 〈u′ · rotu′〉 are positive (and negative in the northern hemisphere), this being just opposite to what occurs for the current helicityℋcurr= 〈j′ ·B′〉, which is negative in the northern hemisphere (and positive in the southern hemisphere). There has been an increasing number of papers presenting observations of current helicity at the solar surface, all showing that it isnegativein the northern hemisphere and positive in the southern hemisphere (see Rüdigeret al. 2000, also for a review).


2000 ◽  
Vol 179 ◽  
pp. 303-306
Author(s):  
S. D. Bao ◽  
G. X. Ai ◽  
H. Q. Zhang

AbstractWe compute the signs of two different current helicity parameters (i.e., αbestandHc) for 87 active regions during the rise of cycle 23. The results indicate that 59% of the active regions in the northern hemisphere have negative αbestand 65% in the southern hemisphere have positive. This is consistent with that of the cycle 22. However, the helicity parameterHcshows a weaker opposite hemispheric preference in the new solar cycle. Possible reasons are discussed.


1985 ◽  
Vol 85 ◽  
pp. 223-226
Author(s):  
K. Weiss-Wrana ◽  
R.H. Giese ◽  
R.H. Zerull

AbstractThe investigations of light scattering by larger meteoritic and terrestrial single grains (size range 20 μm to 120 μm ) demonstrate that the scattering properties of irregularly shaped dark opaque particles with very rough surfaces resemble the characteristic features of the empirical scattering function as derived from measurements of the zodiacal light. Purely transparent or translucent irregularly shaped particles show a quite different scattering behaviour. Furthermore irregular and multicomponent fluffy particles in the size range of a few microns were modelled by microwave analog measurements in order to explain positive and negative polarization of the light scattered by cometary dust grains.


2005 ◽  
Vol 23 (8) ◽  
pp. 2803-2811 ◽  
Author(s):  
J. B. Cao ◽  
Z. X. Liu ◽  
J. Y. Yang ◽  
C. X. Yian ◽  
Z. G. Wang ◽  
...  

Abstract. LFEW is a low frequency electromagnetic wave detector mounted on TC-2, which can measure the magnetic fluctuation of low frequency electromagnetic waves. The frequency range is 8 Hz to 10 kHz. LFEW comprises a boom-mounted, three-axis search coil magnetometer, a preamplifier and an electronics box that houses a Digital Spectrum Analyzer. LFEW was calibrated at Chambon-la-Forêt in France. The ground calibration results show that the performance of LFEW is similar to that of STAFF on TC-1. The first results of LFEW show that it works normally on board, and that the AC magnetic interference of the satellite platform is very small. In the plasmasphere, LFEW observed the ion cyclotron waves. During the geomagnetic storm on 8 November 2004, LFEW observed a wave burst associated with the oxygen ion cyclotron waves. This observation shows that during geomagnetic storms, the oxygen ions are very active in the inner magnetosphere. Outside the plasmasphere, LFEW observed the chorus on 3 November 2004. LFEW also observed the plasmaspheric hiss and mid-latitude hiss both in the Southern Hemisphere and Northern Hemisphere on 8 November 2004. The hiss in the Southern Hemisphere may be the reflected waves of the hiss in the Northern Hemisphere.


1867 ◽  
Vol 15 ◽  
pp. 46-54 ◽  

At a time when the causes which have led to climatal changes in various parts of the globe are the subject of so much discussion, but little apology is needed for calling the attention of this Society to what possibly may have been one of these causes, though it has apparently hitherto escaped observation. That great changes of climate have taken place, at all events in the northern hemisphere of the globe, is one of the best established facts of geology, and that corresponding changes have not been noticed to the same extent in the southern hemisphere may possibly be considered as due, rather to a more limited amount of geological observation, than to an absence of the phenomena indicative of such alterations in climatal con­ditions having occurred.


1996 ◽  
Vol 14 (4) ◽  
pp. 464-467 ◽  
Author(s):  
R. P. Kane

Abstract. The 12-month running means of the surface-to-500 mb precipitable water obtained from analysis of radiosonde data at seven selected locations showed three types of variability viz: (1) quasi-biennial oscillations; these were different in nature at different latitudes and also different from the QBO of the stratospheric tropical zonal winds; (2) decadal effects; these were prominent at middle and high latitudes and (3) linear trends; these were prominent at low latitudes, up trends in the Northern Hemisphere and downtrends in the Southern Hemisphere.


1997 ◽  
Vol 15 (8) ◽  
pp. 984-998 ◽  
Author(s):  
A. V. Pavlov

Abstract. This study compares the OV1-10 satellite measurements of the integral airglow intensities at 630 nm in the SAR arc regions observed in the northern and southern hemisphere as a conjugate phenomenon, with the model results obtained using the time-dependent one-dimensional mathematical model of the Earth ionosphere and plasmasphere (the IZMIRAN model) during the geomagnetic storm of the period 15–17 February 1967. The major enhancements to the IZMIRAN model developed in this study are the inclusion of He+ ions (three major ions: O+, H+, and He+, and three ion temperatures), the updated photochemistry and energy balance equations for ions and electrons, the diffusion of NO+ and O2+ ions and O(1D) and the revised electron cooling rates arising from their collisions with unexcited N2, O2 molecules and N2 molecules at the first vibrational level. The updated model includes the option to use the models of the Boltzmann or non-Boltzmann distributions of vibrationally excited molecular nitrogen. Deviations from the Boltzmann distribution for the first five vibrational levels of N2 were calculated. The calculated distribution is highly non-Boltzmann at vibrational levels v > 2 and leads to a decrease in the calculated electron density and integral intensity at 630 nm in the northern and southern hemispheres in comparison with the electron density and integral intensity calculated using the Boltzmann vibrational distribution of N2. It is found that the intensity at 630 nm is very sensitive to the oxygen number densities. Good agreement between the modelled and measured intensities is obtained provided that at all altitudes of the southern hemisphere a reduction of about factor 1.35 in MSIS-86 atomic oxygen densities is included in the IZMIRAN model with the non-Boltzmann vibrational distribution of N2. The effect of using of the O(1D) diffusion results in the decrease of 4–6% in the calculated integral intensity of the northern hemisphere and 7–13% in the calculated integral intensity of the southern hemisphere. It is found that the modelled intensities of the southern hemisphere are more sensitive to the assumed values of the rate coefficients of O+(4S) ions with the vibrationally excited nitrogen molecules and quenching of O+(2D) by atomic oxygen than the modelled intensities of the northern hemisphere.


1989 ◽  
Vol 44 (10) ◽  
pp. 877-882 ◽  
Author(s):  
H. Fechtig

Abstract Properties of cometary dust particles are better known since the space missions to Comet Halley. Their properties (densities, atomic composition) are compared with relevant observations from lunar microcraters and in-situ experiments. At 1 AU in the eliptic, 2/3 of the dust grains are normal density particles, presumably of asteroidal origin and irregularly shaped, while the remaining 1/3 are low density particles, presumably of cometary origin, but due to solar irradiation in a processed state (corresponding to “Brownlee”-particles). Beyond the asteroidal belt only black cometary dust grains are observed which have recently been released from comet nuclei orbiting on highly eccentric trajectories.


Transfers ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 36-48
Author(s):  
Georgine Clarsen

In this era of the neo-liberal academy, establishing an academic journal is a labor of love and hope. In this article, I celebrate the dedication and commitment of its many contributors and reflect on the value of the arts and humanities to the mobilities paradigm. I do that from the perspective of a feminist historian from a settler colonial polity in the southern hemisphere, where uneven mobilities and the violence of dispossession continue to shape national life. I consider how a mobilities framework that derived from the northern hemisphere has spoken to the intellectual and political projects that played out in a colonial settler nation in the southern hemisphere.


Sign in / Sign up

Export Citation Format

Share Document