Active Asteroids

Author(s):  
Henry Hsieh

The study of active asteroids is a relatively new field of study in Solar System science, focusing on objects with asteroid-like orbits but that exhibit comet-like activity. This field, which crosses traditionally drawn lines between research focused on inactive asteroids and active comets, has motivated reevaluations of classical assumptions about small Solar System objects and presents exciting new opportunities for learning more about the origin and evolution of the Solar System. Active asteroids whose activity appears to be driven by the sublimation of volatile ices could have significant implications for determining the origin of the Earth’s water—and therefore its ability to support life—and also challenge traditional assumptions about the survivability of ice in the warm inner Solar System. Meanwhile, active asteroids whose activity appears to be caused by disruptive processes such as impacts or rotational destabilization provide exciting opportunities to gain insights into fundamental processes operating in the asteroid belt and assessing their effects on the asteroid population seen in the 21st century.

2011 ◽  
Vol 7 (S285) ◽  
pp. 352-354
Author(s):  
T. A. Lister

AbstractAn increasing number of sky surveys is already on-line or soon will be, leading to a large boost in the detection of Solar System objects of all types. For Near-Earth Objects (NEOs) that could potentially hit the Earth, timely follow-up is essential. I describe the development of an automated system which responds to new detections of NEOs from Pan-STARRS and automatically observes them with the LCOGT telescopes. I present results from the first few months of operation, and plans for the future with the 6-site, 40-telescope global LCOGT Network.


2021 ◽  
Vol 922 (1) ◽  
pp. L8 ◽  
Author(s):  
Colin Orion Chandler ◽  
Chadwick A. Trujillo ◽  
Henry H. Hsieh

Abstract We present archival observations of main-belt asteroid (248370) 2005 QN173 (also designated 433P) that demonstrate this recently discovered active asteroid (a body with a dynamically asteroidal orbit displaying a tail or coma) has had at least one additional apparition of activity near perihelion during a prior orbit. We discovered evidence of this second activity epoch in an image captured 2016 July 22 with the DECam on the 4 m Blanco telescope at the Cerro Tololo Inter-American Observatory in Chile. As of this writing, (248370) 2005 QN173 is just the eighth active asteroid demonstrated to undergo recurrent activity near perihelion. Our analyses demonstrate (248370) 2005 QN173 is likely a member of the active asteroid subset known as main-belt comets, a group of objects that orbit in the main asteroid belt that exhibit activity that is specifically driven by sublimation. We implement an activity detection technique, wedge photometry, that has the potential to detect tails in images of solar system objects and quantify their agreement with computed antisolar and antimotion vectors normally associated with observed tail directions. We present a catalog and an image gallery of archival observations. The object will soon become unobservable as it passes behind the Sun as seen from Earth, and when it again becomes visible (late 2022) it will be farther than 3 au from the Sun. Our findings suggest (248370) 2005 QN173 is most active interior to 2.7 au (0.3 au from perihelion), so we encourage the community to observe and study this special object before 2021 December.


2015 ◽  
Vol 10 (S318) ◽  
pp. 99-110
Author(s):  
Henry H. Hsieh

AbstractOur knowledge of main-belt comets (MBCs), which exhibit comet-like activity likely due to the sublimation of volatile ices, yet orbit in the main asteroid belt, has increased greatly since the discovery of the first known MBC, 133P/Elst-Pizarro, in 1996, and their recognition as a new class of solar system objects after the discovery of two more MBCs in 2005. I review work that has been done over the last 10 years to improve our understanding of these enigmatic objects, including the development of systematic discovery methods and diagnostics for distinguishing MBCs from disrupted asteroids (which exhibit comet-like activity due to physical disruptions such as impacts or rotational destabilization). I also discuss efforts to understand the dynamical and thermal properties of these objects.


1991 ◽  
Vol 126 ◽  
pp. 291-298
Author(s):  
Duncan Steel

AbstractApproximately 68,000 orbits of meteoroids, ranging from sizes of 10 cm and more down to microgram masses, are now available through the IAU Meteor Data Center. These orbits were measured in surveys based in the U.S.S.R., the U.S.A., Canada, Somalia, and Australia, using photographic, radar and television techniques; the data represent our best knowledge of the orbital distributions of smaller solid bodies in the solar system. It is found that quite different distributions result in different mass regimes, with implications for the origin and evolution of these particles: for example the larger bodies, observed as fireballs, are associated with meteorites in coming from the region of the asteroid belt with low-inclination orbits, whereas the smaller meteoroids have more comet-like orbits. There is also evidence for several meteoroid streams associated with specific Apollo asteroids. The data may additionally be viewed as a suitable source function in investigations of the production of interplanetary dust from the fragmentation of larger meteoroids in mutual collisions. However, inspection of the data raises many questions: for instance there seem to be many meteoroids on small retrograde paths, but no possible parent objects are known to exist on such orbits.


2009 ◽  
Vol 105 (2-4) ◽  
pp. 101-105 ◽  
Author(s):  
R. L. Jones ◽  
◽  
S. R. Chesley ◽  
A. J. Connolly ◽  
A. W. Harris ◽  
...  
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Q. H. S. Chan ◽  
A. Stephant ◽  
I. A. Franchi ◽  
X. Zhao ◽  
R. Brunetto ◽  
...  

AbstractUnderstanding the true nature of extra-terrestrial water and organic matter that were present at the birth of our solar system, and their subsequent evolution, necessitates the study of pristine astromaterials. In this study, we have studied both the water and organic contents from a dust particle recovered from the surface of near-Earth asteroid 25143 Itokawa by the Hayabusa mission, which was the first mission that brought pristine asteroidal materials to Earth’s astromaterial collection. The organic matter is presented as both nanocrystalline graphite and disordered polyaromatic carbon with high D/H and 15N/14N ratios (δD =  + 4868 ± 2288‰; δ15N =  + 344 ± 20‰) signifying an explicit extra-terrestrial origin. The contrasting organic feature (graphitic and disordered) substantiates the rubble-pile asteroid model of Itokawa, and offers support for material mixing in the asteroid belt that occurred in scales from small dust infall to catastrophic impacts of large asteroidal parent bodies. Our analysis of Itokawa water indicates that the asteroid has incorporated D-poor water ice at the abundance on par with inner solar system bodies. The asteroid was metamorphosed and dehydrated on the formerly large asteroid, and was subsequently evolved via late-stage hydration, modified by D-enriched exogenous organics and water derived from a carbonaceous parent body.


2007 ◽  
Vol 3 (S248) ◽  
pp. 66-73
Author(s):  
J.-E. Arlot

AbstractThe main goal of the astrometry of solar system objects is to build dynamical models of their motions to understand their evolution, to determine physical parameters and to build accurate ephemerides for the preparation and the exploitation of space missions. For many objects, the ground-based observations are still very important because radar or observations from space probes are not available. More, the need of observations on a long period of time makes the ground-based observations necessary. The solar system objects have very different characteristics and the increase of the astrometric accuracy will depend on the objects and on their physical characteristics. The purpose of this communication is to show how to get the best astrometric accuracy.


Sign in / Sign up

Export Citation Format

Share Document