Effects of Superparasitism, Larval Competition, and Host Feeding on Offspring Fitness in the Parasitoid Pimpla nipponica (Hymenoptera: Ichneumonidae)

1997 ◽  
Vol 90 (5) ◽  
pp. 682-688 ◽  
Author(s):  
Takatoshi Ueno
Insects ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 701
Author(s):  
Lorenzo Tonina ◽  
Giulia Zanettin ◽  
Paolo Miorelli ◽  
Simone Puppato ◽  
Andrew G. S. Cuthbertson ◽  
...  

The strawberry blossom weevil (SBW), Anthonomus rubi, is a well-documented pest of strawberry. Recently, in strawberry fields of Trento Province (north-east Italy), new noteworthy damage on fruit linked to SBW adults was observed, combined with a prolonged adult activity until the autumn. In this new scenario, we re-investigated SBW biology, ecology, monitoring tools, and potential control methods to develop Integrated Pest Management (IPM) strategies. Several trials were conducted on strawberry in the laboratory, field and semi-natural habitats. The feeding activity of adult SBW results in small deep holes on berries at different stages, causing yield losses of up to 60%. We observed a prolonged survival of newly emerged adults (>240 days) along with their ability to sever flower buds without laying eggs inside them in the same year (one generation per year). SBW adults were present in the strawberry field year-round, with movement between crop and no crop habitats, underlying a potential role of other host/feeding plants to support its populations. Yellow sticky traps combined with synthetic attractants proved promising for both adult monitoring and mass trapping. Regarding control, adhesive tapes and mass trapping using green bucket pheromone traps gave unsatisfactory results, while the high temperatures provided by the black fabric, the periodic removal of severed buds or adults and Chlorpyrifos-methyl application constrained population build-up. The findings are important for the development of an IPM strategy.


Author(s):  
M.Y. Duan ◽  
H. Zhu ◽  
H. Wang ◽  
S.Y. Guo ◽  
H. Li ◽  
...  

Abstract With further climate change still expected, it is predicted to increase the frequency with plants will be water stressed, which subsequently influences phytophagous insects, particularly Lepidoptera with limited mobility of larvae. Previous studies have indicated that oviposition preference and offspring performance of Lepidoptera insects are sensitive to drought separately. However, the integration of their two properties is not always seen. Here, we evaluated changes in oviposition selection and offspring fitness of a Lepidoptera insect under three water-stressed treatments using a model agroecosystem consisting of maize Zea mays, and Asian corn borer Ostrinia furnacalis. Results found that female O. furnacalis preferred to laying their eggs on well-watered maize, and then their offspring tended to survive better, attained bigger larvae mass, and developed more pupae and adults on the preferred maize. Oviposition selection of O. furnacalis positively correlated with height and leaf traits of maize, and offspring fitness positively related with water content and phytochemical traits of hosts. Overall, these results suggest that oviposition choice performed by O. furnacalis reflects the maximization of offspring fitness, supporting preference–performance hypothesis. This finding further highlights that the importance of simultaneous evaluation of performance and performance for water driving forces should be involved, in order to accurately predict population size of O. furnacalis under altered precipitation pattern.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Lucia Mentesana ◽  
Martin N. Andersson ◽  
Stefania Casagrande ◽  
Wolfgang Goymann ◽  
Caroline Isaksson ◽  
...  

Abstract Background In egg-laying animals, mothers can influence the developmental environment and thus the phenotype of their offspring by secreting various substances into the egg yolk. In birds, recent studies have demonstrated that different yolk substances can interactively affect offspring phenotype, but the implications of such effects for offspring fitness and phenotype in natural populations have remained unclear. We measured natural variation in the content of 31 yolk components known to shape offspring phenotypes including steroid hormones, antioxidants and fatty acids in eggs of free-living great tits (Parus major) during two breeding seasons. We tested for relationships between yolk component groupings and offspring fitness and phenotypes. Results Variation in hatchling and fledgling numbers was primarily explained by yolk fatty acids (including saturated, mono- and polyunsaturated fatty acids) - but not by androgen hormones and carotenoids, components previously considered to be major determinants of offspring phenotype. Fatty acids were also better predictors of variation in nestling oxidative status and size than androgens and carotenoids. Conclusions Our results suggest that fatty acids are important yolk substances that contribute to shaping offspring fitness and phenotype in free-living populations. Since polyunsaturated fatty acids cannot be produced de novo by the mother, but have to be obtained from the diet, these findings highlight potential mechanisms (e.g., weather, habitat quality, foraging ability) through which environmental variation may shape maternal effects and consequences for offspring. Our study represents an important first step towards unraveling interactive effects of multiple yolk substances on offspring fitness and phenotypes in free-living populations. It provides the basis for future experiments that will establish the pathways by which yolk components, singly and/or interactively, mediate maternal effects in natural populations.


2016 ◽  
pp. arw100 ◽  
Author(s):  
Hugo Cayuela ◽  
Thierry Lengagne ◽  
Bernard Kaufmann ◽  
Pierre Joly ◽  
Jean-Paul Léna

2013 ◽  
Vol 9 (1) ◽  
pp. e1003122 ◽  
Author(s):  
John J. Worthington ◽  
Linda C. Samuelson ◽  
Richard K. Grencis ◽  
John T. McLaughlin

1998 ◽  
Vol 92 (3) ◽  
pp. 311-316 ◽  
Author(s):  
D. V. CANYON J. L. K. HII R. MULLER
Keyword(s):  

Ecology ◽  
2002 ◽  
Vol 83 (9) ◽  
pp. 2439-2451 ◽  
Author(s):  
Jeffrey A. Harvey ◽  
Michael R. Strand
Keyword(s):  

2015 ◽  
Vol 27 (1) ◽  
pp. 131-156
Author(s):  
RONGSONG LIU ◽  
GERGELY RÖST ◽  
STEPHEN A. GOURLEY

Intra-specific competition in insect and amphibian species is often experienced in completely different ways in their distinct life stages. Competition among larvae is important because it can impact on adult traits that affect disease transmission, yet mathematical models often ignore larval competition. We present two models of larval competition in the form of delay differential equations for the adult population derived from age-structured models that include larval competition. We present a simple prototype equation that models larval competition in a simplistic way. Recognising that individual larvae experience competition from other larvae at various stages of development, we then derive a more complex equation containing an integral with a kernel that quantifies the competitive effect of larvae of ageāon larvae of agea. In some parameter regimes, this model and the famous spruce budworm model have similar dynamics, with the possibility of multiple co-existing equilibria. Results on boundedness and persistence are also proved.


PLoS ONE ◽  
2015 ◽  
Vol 10 (9) ◽  
pp. e0137005 ◽  
Author(s):  
Jukka Kekäläinen ◽  
Carles Soler ◽  
Sami Veentaus ◽  
Hannu Huuskonen

Sign in / Sign up

Export Citation Format

Share Document