scholarly journals Hypovitaminosis D is associated with insulin resistance and β cell dysfunction

2004 ◽  
Vol 80 (6) ◽  
pp. 1666-1666 ◽  
Author(s):  
Barbara J Boucher ◽  
W Garry John ◽  
Kate Noonan
2004 ◽  
Vol 79 (5) ◽  
pp. 820-825 ◽  
Author(s):  
Ken C Chiu ◽  
Audrey Chu ◽  
Vay Liang W Go ◽  
Mohammed F Saad

Author(s):  
Froylan David Martínez-Sánchez ◽  
Valerie Paola Vargas-Abonce ◽  
Andrea Rocha-Haro ◽  
Romina Flores-Cardenas ◽  
Milagros Fernández-Barrio ◽  
...  

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Ebrahim Mokhtari ◽  
Hossein Farhadnejad ◽  
Farshad Teymoori ◽  
Parvin Mirmiran ◽  
Fereidoun Azizi

Abstract Background We aim to assess the association of empirical dietary (EDIH) and lifestyle (ELIH) index for hyperinsulinemia with the risk of insulin resistance, hyperinsulinemia, insulin sensitivity, and β-cell dysfunction in Iranian adults. Methods In this prospective study, a total of 1244 men and women aged ≥ 20 years were selected among participants of the Tehran lipid and glucose study and followed for 3.2 years. Dietary intakes were assessed using a valid semi-quantitative food frequency questionnaire. Dietary and lifestyle insulinemic potential indices were calculated using dietary intake, body mass index, and physical activity information. Multivariable logistic regression was used to estimate the associated risk of a 3-year incidence of insulin-related disorders. Results The mean ± SD age and BMI of all eligible participants (42.7% males) were 43.0 ± 13.0 and 27.4 ± 4.9 in the study's baseline. After adjusting for all potential confounders, participants in the highest tertile of ELIH score had a greater risk of developing hyperinsulinemia (OR:2.42, 95%CI:1.52–3.86, P for trend =  < 0.001), insulin resistance (OR:2.71, 95%CI:1.75–4.18, P for trend =  < 0.001) and insulin insensitivity (OR:2.65, 95%CI: 1.72–4.10, P for trend =  < 0.001) compared with those in the lowest tertile. However, the risk of incident β-cell dysfunction was lower in individuals with a higher score of ELIH in comparison to those with the lowest score (OR:0.30, 95%CI:0.19–0.45, P for trend =  < 0.001). Conclusions Empirical lifestyle index for hyperinsulinemia was directly associated with insulin resistance, insulin insensitivity, and hyperinsulinemia and was inversely associated with β-cells dysfunction.


2021 ◽  
Vol 19 (1) ◽  
pp. 44-52
Author(s):  
A.P. Shumilov ◽  
◽  
M.Yu. Semchenkova ◽  
D.S. Mikhalik ◽  
T.G. Avdeeva ◽  
...  

Vitamin D plays an important role in decreasing the risk of developing type 2 diabetes by influencing calcium metabolism, thereby reducing β-cell dysfunction and preventing insulin resistance. The findings of research works are contradictory enough, although some of them demonstrated an inverse relationship between vitamin D levels and the incidence of type 2 diabetes. The article describes the biological mechanisms of relationships between vitamin D levels and type 2 diabetes, reviews the results of the studies conducted and summarizes the available data. Key words: vitamin D, type 2 diabetes mellitus, insulin resistance


2007 ◽  
Vol 292 (6) ◽  
pp. E1694-E1701 ◽  
Author(s):  
Jane J. Kim ◽  
Yoshiaki Kido ◽  
Philipp E. Scherer ◽  
Morris F. White ◽  
Domenico Accili

Type 2 diabetes results from impaired insulin action and β-cell dysfunction. There are at least two components to β-cell dysfunction: impaired insulin secretion and decreased β-cell mass. To analyze how these two variables contribute to the progressive deterioration of metabolic control seen in diabetes, we asked whether mice with impaired β-cell growth due to Irs2 ablation would be able to mount a compensatory response in the background of insulin resistance caused by Insr haploinsufficiency. As previously reported, ∼70% of mice with combined Insr and Irs2 mutations developed diabetes as a consequence of markedly decreased β-cell mass. In the initial phases of the disease, we observed a robust increase in circulating insulin levels, even as β-cell mass gradually declined, indicating that replication-defective β-cells compensate for insulin resistance by increasing insulin secretion. These data provide further evidence for a heterogeneous β-cell response to insulin resistance, in which compensation can be temporarily achieved by increasing function when mass is limited. The eventual failure of compensatory insulin secretion suggests that a comprehensive treatment of β-cell dysfunction in type 2 diabetes should positively affect both aspects of β-cell physiology.


Sign in / Sign up

Export Citation Format

Share Document