scholarly journals Effects of Folic Acid Supplementation on Serum Folate and Plasma Homocysteine Concentrations in Older Adults: A Dose-Response Trial

2010 ◽  
Vol 172 (8) ◽  
pp. 932-941 ◽  
Author(s):  
C. A. M. Anderson ◽  
S. H. Jee ◽  
J. Charleston ◽  
M. Narrett ◽  
L. J. Appel
2017 ◽  
Vol 42 (10) ◽  
pp. 1015-1022 ◽  
Author(s):  
Shanshan Cui ◽  
Wen Li ◽  
Xin Lv ◽  
Pengyan Wang ◽  
Guowei Huang ◽  
...  

Atherosclerosis is a chronic disease that can seriously endanger human life. Folic acid supplementation modulates several disorders, including atherosclerosis, via its antiapoptotic and antioxidative properties. This study investigated whether folic acid alleviates atherogenesis by restoring homocysteine levels and antioxidative capacity in atherosclerosis Wistar rats. To this end, 28 Wistar rats were randomly divided into 4 groups (7 rats/group) as follows: (i) wild-type group, fed only the AIN-93 semi-purified rodent diet (folic acid: 2.1 mg/kg); (ii) high-fat + folic acid-deficient group (HF+DEF) (folic acid: 0.2 mg/kg); (iii) high-fat + normal folic acid group (folic acid: 2.1 mg/kg); and (iv) high-fat + folic acid-supplemented group (folic acid: 4.2 mg/kg). After 12 weeks, histopathological changes in the atherosclerotic lesions of the aortic arch were determined. In addition, serum folate levels, plasma homocysteine levels, plasma S-adenosyl-homocysteine levels, antioxidant status, oxidant status, and lipid profiles were evaluated. The results show aggravated atherosclerotic lesions in the HF+DEF group. Folic acid supplementation increased concentrations of serum folate. Further, folic acid supplementation increased high-density lipoprotein-cholesterol, decreased plasma homocysteine levels, and improved antioxidant capacity in atherogenic rats. These findings are consistent with the hypothesis that folic acid alleviates atherogenesis by reducing plasma homocysteine levels and improving antioxidant capacity in rats fed a high-fat diet.


2005 ◽  
Vol 94 (07) ◽  
pp. 96-100 ◽  
Author(s):  
Mariska Klerk ◽  
Jane Durga ◽  
Evert G. Schouten ◽  
Cornelis Kluft ◽  
Frans J. Kok ◽  
...  

SummaryElevated homocysteine levels are associated with an increased cardiovascular disease (CVD) risk, but the underlying mechanism is still unclear. High homocysteine might affect the endothelium, and consequently lead to impaired haemostasis. In a randomized placebo controlled trial among 276 older adults with plasma total homocysteine concentrations above 13 mM at screening, we investigated the effect of homocysteine lowering by folic acid supplementation (0.8 mg/day) for 1 year on markers of endothelial function (vonWillebrand factor), coagulation (tissue factor, factor VIIa, fragments 1+2), and fibrinolysis (fibrin degradation products, tissue-type plasminogen activator), and inflammation (C-reactive protein). Despite a 24% reduction in plasma homocysteine concentration and four-fold increase in serum folate concentration in the folic acid group compared to the placebo group, there was no clear change in any of the haemostasis markers, nor CRP. Although homocysteine is associated with vascular disease risk in the general population, marked lowering of slightly elevated homocysteine concentrations by one-year folic acid supplementation does not influence haemostasis markers.


2018 ◽  
Vol 103 (8) ◽  
pp. 1123-1131 ◽  
Author(s):  
Daniel Gagnon ◽  
Steven A. Romero ◽  
Matthew N. Cramer ◽  
Ken Kouda ◽  
Paula Y S. Poh ◽  
...  

2007 ◽  
Vol 77 (1) ◽  
pp. 66-72 ◽  
Author(s):  
McEneny ◽  
Couston ◽  
McKibben ◽  
Young ◽  
Woodside

Raised total homocysteine (tHcy) levels may be involved in the etiology of cardiovascular disease and can lead to damage of vascular endothelial cells and arterial wall matrix. Folic acid supplementation can help negate these detrimental effects by reducing tHcy. Recent evidence has suggested an additional anti-atherogenic property of folate in protecting lipoproteins against oxidation. This study utilized both an in vitro and in vivo approach. In vitro: Very-low-density lipoprotein (VLDL) and low density lipoprotein (LDL) were isolated by rapid ultracentrifugation and then oxidized in the presence of increasing concentrations (0→ μmol/L) of either folic acid or 5-methyltetrahydrofolate (5-MTHF). In vivo: Twelve female subjects were supplemented with folic acid (1 mg/day), and the pre- and post-VLDL and LDL isolates subjected to oxidation. In vitro: 5-MTHF, but not folic acid, significantly increased the resistance of VLDL and LDL to oxidation. In vivo: Following folic acid supplementation, tHcy decreased, serum folate increased, and both VLDL and LDL displayed a significant increase in their resistance to oxidation. These results indicated that in vitro, only the active form of folate, 5-MTHF, had antioxidant properties. In vivo results demonstrated that folic acid supplementation reduced tHcy and protected both VLDL and LDL against oxidation. These findings provide further support for the use of folic acid supplements to aid in the prevention of atherosclerosis.


2007 ◽  
Vol 146 (1) ◽  
pp. 1 ◽  
Author(s):  
Jane Durga ◽  
Petra Verhoef ◽  
Lucien J.C. Anteunis ◽  
Evert Schouten ◽  
Frans J. Kok

Sign in / Sign up

Export Citation Format

Share Document