scholarly journals Control of Exposure to Hexavalent Chromium and Ozone in Gas Metal Arc Welding of Stainless Steels by Use of a Secondary Shield Gas

1998 ◽  
Vol 14 (04) ◽  
pp. 246-254
Author(s):  
Bhaskar Kura ◽  
Praveen Mookoni

The Occupational Safety and Health Administration is expected to reduce permissible exposure limits of hexavalent chromium from 100 ng/m3between 5 to 0.5 fig/m3. A Navy Industry Task Group study revealed that the impact of proposed regulations on the shipbuilding industry is significant. The estimated cost of compliance by the Navy facilities could be as much as $46 Million/year besides a one-time cost of about $22 Million. Also, the task group estimated that the cost of $9 Million. This paper presents the results of a study undertaken at the University of New Orleans in support of the Navy/Industry Task Group efforts. The study included assessments of Cr(VI) exposure levels for two specific welding processes and three welding scenarios. Airborne particulate matter was collected using personal samplers for two specific welding processes, Gas Metal Arc Welding and Flux-Cored Arc Welding. Two base metals, HY100 and DH36, were considered for Flux-Cored Arc Welding and one base metal, HY100, was considered for Gas Metal Arc Welding. The samples were analyzed for Cr(VI) using OSHA Method 215. Based on the data generated, it can be concluded that Gas Metal Arc Welding and Flux-Cored Arc Welding on HY100 steel result in 8-hr. worker exposures less than 0.5 fig/m3 in a laboratory type setting, though the same levels of exposure may be difficult to be achieved in the field. Flux-Cored Arc Welding on DH36 resulted in exposure above 0.5 ng/m3, again in laboratory type setting.


2013 ◽  
Vol 18 (3) ◽  
pp. 207-216 ◽  
Author(s):  
Koray Yurtisik ◽  
Suha Tirkes ◽  
Igor Dykhno ◽  
C. Hakan Gur ◽  
Riza Gurbuz

Despite its high efficiency, autogenous keyhole welding is not well-accepted for duplex stainless steels because it causes excessive ferrite in as-welded duplex microstructure, which leads to a degradation in toughness and corrosion properties of the material. Combining the deep penetration characteristics of plasma arc welding in keyhole mode and metal deposition capability of gas metal arc welding, hybrid plasma - gas metal arc welding process has considered for providing a proper duplex microstructure without compromising the welding efficiency. 11.1 mm-thick standard duplex stainless steel plates were joined in a single-pass using this novel technique. Same plates were also subjected to conventional gas metal arc and plasma arc welding processes, providing benchmarks for the investigation of the weldability of the material. In the first place, the hybrid welding process enabled us to achieve less heat input compared to gas metal arc welding. Consequently, the precipitation of secondary phases, which are known to be detrimental to the toughness and corrosion resistance of duplex stainless steels, was significantly suppressed in both fusion and heat affected zones. Secondly, contrary to other keyhole techniques, proper cooling time and weld metal chemistry were achieved during the process, facilitating sufficient reconstructive transformation of austenite in the ferrite phase.


Alloy Digest ◽  
1996 ◽  
Vol 45 (1) ◽  

Abstract INCO WELD C Electrode is a stainless-alloy electrode especially designed for shielded-metal-arc welding of a broad range of materials, including many difficult-to-weld compositions. It can be used in stainless steels, mild and medium-carbon steels,and spring steels. This datasheet provides information on composition, hardness, and tensile properties. It also includes information on joining. Filing Code: SS-632. Producer or source: Inco Alloys International Inc.


Data in Brief ◽  
2021 ◽  
Vol 35 ◽  
pp. 106790
Author(s):  
Rogfel Thompson Martinez ◽  
Guillermo Alvarez Bestard ◽  
Sadek C. Absi Alfaro

Sign in / Sign up

Export Citation Format

Share Document