scholarly journals Substantial intraspecific genome size variation in golden-brown algae and its phenotypic consequences

2020 ◽  
Vol 126 (6) ◽  
pp. 1077-1087
Author(s):  
Dora Čertnerová ◽  
Pavel Škaloud

Abstract Background and Aims While nuclear DNA content variation and its phenotypic consequences have been well described for animals, vascular plants and macroalgae, much less about this topic is known regarding unicellular algae and protists in general. The dearth of data is especially pronounced when it comes to intraspecific genome size variation. This study attempts to investigate the extent of intraspecific variability in genome size and its adaptive consequences in a microalgal species. Methods Propidium iodide flow cytometry was used to estimate the absolute genome size of 131 strains (isolates) of the golden-brown alga Synura petersenii (Chrysophyceae, Stramenopiles), identified by identical internal transcribed spacer (ITS) rDNA barcodes. Cell size, growth rate and genomic GC content were further assessed on a sub-set of strains. Geographic location of 67 sampling sites across the Northern hemisphere was used to extract climatic database data and to evaluate the ecogeographical distribution of genome size diversity. Key Results Genome size ranged continuously from 0.97 to 2.02 pg of DNA across the investigated strains. The genome size was positively associated with cell size and negatively associated with growth rate. Bioclim variables were not correlated with genome size variation. No clear trends in the geographical distribution of strains of a particular genome size were detected, and strains of different genome size occasionally coexisted at the same locality. Genomic GC content was significantly associated only with genome size via a quadratic relationship. Conclusions Genome size variability in S. petersenii was probably triggered by an evolutionary mechanism operating via gradual changes in genome size accompanied by changes in genomic GC content, such as, for example, proliferation of transposable elements. The variation was reflected in cell size and relative growth rate, possibly with adaptive consequences.

2015 ◽  
Vol 57 (1) ◽  
pp. 104-113
Author(s):  
Sandra Cichorz ◽  
Maria Gośka ◽  
Monika Rewers

AbstractSinceM. sinensisAnderss.,M. sacchariflorus(Maxim.) Hack. andM. ×giganteusJ.M.Greef & Deuter ex Hodk. and Renvoize have considerably the highest potential for biomass production amongMiscanthusAnderss. species, there is an urgent need to broaden the knowledge about cytological characteristics required for their improvement. In this study our objectives were to assess the genome size variation among eighteenMiscanthusaccessions, as well as estimation of the monoploid genome size (2C and Cx) of theM. sinensiscultivars, which have not been analyzed yet. The characterization of threeMiscanthusspecies was performed with the use of flow cytometry and analysis of the stomatal length. The triploid (2n = 3x = 57)M. sinensis‘Goliath’ andM. ×giganteusclones possessed the highest 2C DNA content (8.34 pg and 7.43 pg, respectively). The intermediate 2C-values were found in the nuclei of the diploid (2n = 2x = 38)M. sinensisaccessions (5.52–5.72 pg), whereas they were the lowest in the diploid (2n = 2x = 38)M. sacchariflorusecotypes (4.58–4.59 pg). The presented study revealed interspecific variation of nuclear DNA content (P<0.01) and therefore allowed for recognition of particular taxa, inter- and intraspecific hybrids and prediction of potential parental components. Moreover, intraspecific genome size variation (P<0.01) was observed inM. sinensiscultivars at 3.62%. The values of the stomatal size obtained for the triploidM. ×giganteus‘Great Britain’ (mean 30.70 μm) or ‘Canada’ (mean 29.67 μm) and diploidM. sinensis‘Graziella’ (mean 29.96 μm) did not differ significantly, therefore this parameter is not recommended for ploidy estimation.


Genome ◽  
1996 ◽  
Vol 39 (4) ◽  
pp. 730-735 ◽  
Author(s):  
Juha Kankanpää ◽  
Alan H. Schulman ◽  
Leena Mannonen

Hordeum, distributed worldwide in temperate zones, is the second largest genus in the tribe Triticeae and includes diploid, tetraploid, and hexaploid species. We determined, by DAPI staining and flow cytometry, the nuclear DNA content for 35 accessions of the genus Hordeum, from a total of 19 species, including specimens of 2 cultivars and 2 landraces of Hordeum vulgare ssp. vulgare as well as samples of 12 Hordeum vulgare ssp. spontaneum populations. Genome sizes ranged from 5.69 to 9.41 pg for the G1 nuclei of the diploids, and from 13.13 to 18.36 pg for those of the tetraploids. This constitutes a 1.7-fold variation for the diploids, contrasting with a 4% variation previously reported. For H. vulgare ssp. vulgare (barley), the accessions examined differed by 18%. These variations in genome size cannot be correlated with meiotic pairing groups (I, H, X, Y) or with proposed phylogenetic relationships within the genus. Genome size variation between barley accessions cannot be related to status as cultivated or wild, or to climatic or geological gradients. We suggest these data may indicate rapid but sporadic changes in genome size within the genus. Key words : barley, Hordeum, Triticeae, genome size, flow cytometry.


Genome ◽  
2010 ◽  
Vol 53 (12) ◽  
pp. 1066-1082 ◽  
Author(s):  
David Zaitlin ◽  
Andrew J. Pierce

The Gesneriaceae (Lamiales) is a family of flowering plants comprising >3000 species of mainly tropical origin, the most familiar of which is the cultivated African violet ( Saintpaulia spp.). Species of Gesneriaceae are poorly represented in the lists of taxa sampled for genome size estimation; measurements are available for three species of Ramonda and one each of Haberlea , Saintpaulia, and Streptocarpus , all species of Old World origin. We report here nuclear genome size estimates for 10 species of Sinningia , a neotropical genus largely restricted to Brazil. Flow cytometry of leaf cell nuclei showed that holoploid genome size in Sinningia is very small (approximately two times the size of the Arabidopsis genome), and is small compared to the other six species of Gesneriaceae with genome size estimates. We also documented intraspecific genome size variation of 21%–26% within a group of wild Sinningia speciosa (Lodd.) Hiern collections. In addition, we analyzed 1210 genome survey sequences from S. speciosa to characterize basic features of the nuclear genome such as guanine–cytosine content, types of repetitive elements, numbers of protein-coding sequences, and sequences unique to S. speciosa. We included several other angiosperm species as genome size standards, one of which was the snapdragon ( Antirrhinum majus L.; Veronicaceae, Lamiales). Multiple measurements on three accessions indicated that the genome size of A. majus is ∼633 × 106 base pairs, which is approximately 40% of the previously published estimate.


2019 ◽  
Author(s):  
Julie Blommaert ◽  
Simone Riss ◽  
Bette Hecox-Lea ◽  
David B. Mark-Welch ◽  
Claus-Peter Stelzer

Abstract Background: The causes and consequences of genome size variation across Eukaryotes, which spans five orders of magnitude, have been hotly debated since before the advent of genome sequencing. Previous studies have mostly examined variation among larger taxonomic units (e.g., orders, or genera), while comparisons among closely related species are rare. Rotifers of the Brachionus plicatilis species complex exhibit a seven-fold variation in genome size and thus represent a unique opportunity to study such changes on a relatively short evolutionary timescale. Here, we sequenced and analysed the genomes of four species of this complex with nuclear DNA contents spanning 110- 422 Mbp. To establish the likely mechanisms of genome size change, we analysed both sequencing read libraries and assemblies for signatures of polyploidy and repetitive element content. We also compared these genomes to that of B. calyciflorus, the closest relative with a sequenced genome (293 Mbp nuclear DNA content). Results summary: Despite the very large differences in genome size, we saw no evidence of ploidy level changes across the B. plicatilis complex. However, repetitive element content explained a large portion of genome size variation (at least 54%). The species with the largest genome, B. asplanchnoidis, has a strikingly high 44% repetitive element content, while the smaller B. plicatilis genomes contain between 14% and 25% repetitive elements. According to our analyses, the B. calyciflorus genome contains 39% repetitive elements, which is substantially higher than previously reported (21%), and suggests that high repetitive element load could be widespread in monogonont rotifers. Conclusions: Even though the genome sizes of these species are at the low end of the Metazoan spectrum, their genomes contain substantial amounts of repetitive elements. Polyploidy does not appear to play a role in genome size variations in these species, and these variations can be mostly explained by changes in repetitive element content. This contradicts the naïve expectation that small genomes are streamlined, or less complex, and that large variations in nuclear DNA content between closely related species are due to polyploidy.


2019 ◽  
Author(s):  
Julie Blommaert ◽  
Simone Riss ◽  
Bette Hecox-Lea ◽  
David B. Mark-Welch ◽  
Claus-Peter Stelzer

Abstract Background: The causes and consequences of genome size variation across Eukaryotes, which spans five orders of magnitude, have been hotly debated since before the advent of genome sequencing. Previous studies have mostly examined variation among larger taxonomic units (e.g., orders, or genera), while comparisons among closely related species are rare. Rotifers of the Brachionus plicatilis species complex exhibit a seven-fold variation in genome size and thus represent a unique opportunity to study such changes on a relatively short evolutionary timescale. Here, we sequenced and analysed the genomes of four species of this complex with nuclear DNA contents spanning 110- 422 Mbp. To establish the likely mechanisms of genome size change, we analysed both sequencing read libraries and assemblies for signatures of polyploidy and repetitive element content. We also compared these genomes to that of B. calyciflorus, the closest relative with a sequenced genome (293 Mbp nuclear DNA content). Results summary: Despite the very large differences in genome size, we saw no evidence of ploidy level changes across the B. plicatilis complex. However, repetitive element content explained a large portion of genome size variation (at least 54%). The species with the largest genome, B. asplanchnoidis, has a strikingly high 44% repetitive element content, while the smaller B. plicatilis genomes contain between 14% and 25% repetitive elements. According to our analyses, the B. calyciflorus genome contains 39% repetitive elements, which is substantially higher than previously reported (21%), and suggests that high repetitive element load could be widespread in monogonont rotifers. Conclusions: Even though the genome sizes of these species are at the low end of the Metazoan spectrum, their genomes contain substantial amounts of repetitive elements. Polyploidy does not appear to play a role in genome size variations in these species, and these variations can be mostly explained by changes in repetitive element content. This contradicts the naïve expectation that small genomes are streamlined, or less complex, and that large variations in nuclear DNA content between closely related species are due to polyploidy.


2019 ◽  
Author(s):  
Julie Esmeralda Blommaert ◽  
Simone Riss ◽  
Bette Hecox-Lea ◽  
David B. Mark-Welch ◽  
Claus-Peter Stelzer

Abstract Background The causes and consequences of genome size variation across Eukaryotes, which spans five orders of magnitude, have been hotly debated since before the advent of genome sequencing. Previous studies have mostly examined variation among larger taxonomic units (e.g., orders, or genera), while comparisons among closely related species are rare. Rotifers of the Brachionus plicatilis species complex exhibit a seven-fold variation in genome size and thus represent a unique opportunity to study such changes on a relatively short evolutionary timescale. Here, we sequenced and analysed the genomes of four species of this complex with nuclear DNA contents spanning 110- 422 Mbp. To establish the likely mechanisms of genome size change, we analysed both sequencing read libraries and assemblies for signatures of polyploidy and repetitive element content. We also compared these genomes to that of B. calyciflorus, the closest relative with a sequenced genome (293 Mbp nuclear DNA content). Results summary Despite the very large differences in genome size, we saw no evidence of ploidy level changes across the B. plicatilis complex. However, repetitive element content explained a large portion of genome size variation (at least 54%). The species with the largest genome, B. asplanchnoidis, has a strikingly high 44% repetitive element content, while the smaller B. plicatilis genomes contain between 14% and 25% repetitive elements. According to our analyses, the B. calyciflorus genome contains 39% repetitive elements, which is substantially higher than previously reported (21%), and suggests that high repetitive element load could be widespread in monogonont rotifers. Conclusions Even though the genome sizes of these species are at the low end of the Metazoan spectrum, their genomes contain substantial amounts of repetitive elements. Polyploidy does not appear to play a role in genome size variations in these species, and these variations can be mostly explained by changes in repetitive element content. This contradicts the naïve expectation that small genomes are streamlined, or less complex, and that large variations in nuclear DNA content between closely related species are due to polyploidy.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
C. P. Stelzer ◽  
J. Blommaert ◽  
A. M. Waldvogel ◽  
M. Pichler ◽  
B. Hecox-Lea ◽  
...  

Abstract Background Eukaryotic genomes are known to display an enormous variation in size, but the evolutionary causes of this phenomenon are still poorly understood. To obtain mechanistic insights into such variation, previous studies have often employed comparative genomics approaches involving closely related species or geographically isolated populations within a species. Genome comparisons among individuals of the same population remained so far understudied—despite their great potential in providing a microevolutionary perspective to genome size evolution. The rotifer Brachionus asplanchnoidis represents one of the most extreme cases of within-population genome size variation among eukaryotes, displaying almost twofold variation within a geographic population. Results Here, we used a whole-genome sequencing approach to identify the underlying DNA sequence differences by assembling a high-quality reference genome draft for one individual of the population and aligning short reads of 15 individuals from the same geographic population including the reference individual. We identified several large, contiguous copy number variable regions (CNVs), up to megabases in size, which exhibited striking coverage differences among individuals, and whose coverage overall scaled with genome size. CNVs were of remarkably low complexity, being mainly composed of tandemly repeated satellite DNA with only a few interspersed genes or other sequences, and were characterized by a significantly elevated GC-content. CNV patterns in offspring of two parents with divergent genome size and CNV patterns in several individuals from an inbred line differing in genome size demonstrated inheritance and accumulation of CNVs across generations. Conclusions By identifying the exact genomic elements that cause within-population genome size variation, our study paves the way for studying genome size evolution in contemporary populations rather than inferring patterns and processes a posteriori from species comparisons.


2015 ◽  
Vol 64 (1-6) ◽  
pp. 20-32 ◽  
Author(s):  
Deepak Ohri

AbstractAngiosperm hardwood species are generally considered to show an average smaller genome size with a narrow range of variation than their herbaceous counterparts. Various explanations pertaining to limitations of cell size exerted by wood fibers, the requirement of smaller stomata, longer generation time, large population size, etc., have been put forward to account for their small and constrained genome size. Yet studies done in the past several years show that genomically as well as evolutionarily, hardwoods are as diverse and active as their herbaceous counterparts. This is entirely supported by the presence of well developed inter and intraspecific polyploid series and natural triploidy in many genera. Polyploidy, in some instances has been shown to confer adaptability to arid and salt stress conditions and in colonization of new areas. Moreover, hardwoods also show reasonable amenability to the induced polyploidy which abruptly changes the balance between nuclear and cell size. Polyploidy has been induced in many hardwoods to restore fertility in interspecific hybrids and for the production of triploids.Furthermore, some cases studied show that genome size variation in hardwoods can be as variable as that of herbaceous species. Genome size has been shown to vary remarkably both at homoploid level as well as by polyploidy in certain genera. In the same way, the genome size is not correlated with the habit in certain groups having both herbaceous and woody taxa. This point is further proved by the presence of secondary and insular woody habit in certain cases where either the transition to woodiness is not followed by any diminution in the genome size, or the genome size of insular woody species may be even more than that of the congeneric herbaceous species. This shows that woody habit does not by itself put any constraints on the genome size either at homoploid or at polyploidy levels. The genome size in fact, not only varies significantly in many congeneric woody species but also may not show any correlation with the habit when woody and herbaceous species are compared in some narrow taxonomic groups studied.


2010 ◽  
Vol 2010 ◽  
pp. 1-8 ◽  
Author(s):  
Monika Höfer ◽  
Armin Meister

The nuclear DNA content for 256 different accessions belonging to 26 primary Malus species and 20 species hybrids was estimated by flow cytometry using propidium iodide. Diploids ranged from 1.245 (M. tschonoskii) to 1.653  pg per 2C nucleus (M. florentina). As our study covered complete phylogenetic and geographic representation, preliminary conclusions between nuclear DNA content and geographical and taxonomic features could be drawn. The data indicated that species found far from the centre of origin in Asia clustered into separate sections and series and possessed higher DNA content. These are M. trilobata and M. florentina the only two species existing in South-East Europe on one hand; M. ioensis and 3x and 4x species M. heterophylla, M. platycarpa, M. glaucescens, M. angustifolia, M. lancifolia and M. coronaria—in East and Central North America on the other hand. A significantly decreased 1Cx DNA content was observed with the increase in ploidy for six species.


Genome ◽  
2003 ◽  
Vol 46 (4) ◽  
pp. 683-706 ◽  
Author(s):  
David C Hardie ◽  
Paul D.N Hebert

Cytological and organismal characteristics associated with cellular DNA content underpin most adaptionist interpretations of genome size variation. Since fishes are the only group of vertebrate for which relationships between genome size and key cellular parameters are uncertain, the cytological correlates of genome size were examined in this group. The cell and nuclear areas of erythrocytes showed a highly significant positive correlation with each other and with genome size across 22 cartilaginous and 201 ray-finned fishes. Regressions remained significant at all taxonomic levels, as well as among different fish lineages. However, the results revealed that cartilaginous fishes possess higher cytogenomic ratios than ray-finned fishes, as do cold-water fishes relative to their warm-water counterparts. Increases in genome size owing to ploidy shifts were found to influence cell and nucleus size in an immediate and causative manner, an effect that persists in ancient polyploid lineages. These correlations with cytological parameters known to have important influences on organismal phenotypes support an adaptive interpretation for genome size variation in fishes.Key words: evolution, genome size, DNA content, cell size, erythrocyte size, fishes, nucleotypic effect.


Sign in / Sign up

Export Citation Format

Share Document