scholarly journals Substrate specificity of two cytochrome P450 monooxygenases involved in lankamycin biosynthesis

2021 ◽  
Vol 85 (1) ◽  
pp. 115-125
Author(s):  
Aiko Teshima ◽  
Hisashi Kondo ◽  
Yu Tanaka ◽  
Yosi Nindita ◽  
Yuya Misaki ◽  
...  

Abstract To elucidate the gross lankamycin biosynthetic pathway including two cytochrome P450 monooxygenases, LkmK and LkmF, we constructed two double mutants of P450 genes in combination with glycosyltransferase genes, lkmL and lkmI. An aglycon 8,15-dideoxylankanolide, a possible substrate for LkmK, was prepared from an lkmK–lkmL double mutant, while a monoglycoside 3-O-l-arcanosyl-8-deoxylankanolide, a substrate for LkmF, was from an lkmF–lkmI double mutant. Bioconversion of lankamycin derivatives was performed in the Escherichia coli recombinant for LkmK and the Streptomyces lividans recombinant for LkmF, respectively. LkmK catalyzes the C-15 hydroxylation on all 15-deoxy derivatives, including 8,15-dideoxylankanolide (a possible substrate), 8,15-dideoxylankamycin, and 15-deoxylankamycin, suggesting the relaxed substrate specificity of LkmK. On the other hand, LkmF hydroxylates the C-8 methine of 3-O-l-anosyl-8-deoxylankanolide. Other 8-deoxy lankamycin/lankanolide derivatives were not oxidized, suggesting the importance of a C-3 l-arcanosyl moiety for substrate recognition by LkmF in lankamycin biosynthesis. Thus, LkmF has a strict substrate specificity in lankamycin biosynthesis.

2018 ◽  
Vol 475 (23) ◽  
pp. 3875-3886 ◽  
Author(s):  
Craig S. Robb ◽  
Lukas Reisky ◽  
Uwe T. Bornscheuer ◽  
Jan-Hendrik Hehemann

Degradation of carbohydrates by bacteria represents a key step in energy metabolism that can be inhibited by methylated sugars. Removal of methyl groups, which is critical for further processing, poses a biocatalytic challenge because enzymes need to overcome a high energy barrier. Our structural and computational analysis revealed how a member of the cytochrome P450 family evolved to oxidize a carbohydrate ligand. Using structural biology, we ascertained the molecular determinants of substrate specificity and revealed a highly specialized active site complementary to the substrate chemistry. Invariance of the residues involved in substrate recognition across the subfamily suggests that they are critical for enzyme function and when mutated, the enzyme lost substrate recognition. The structure of a carbohydrate-active P450 adds mechanistic insight into monooxygenase action on a methylated monosaccharide and reveals the broad conservation of the active site machinery across the subfamily.


2012 ◽  
Vol 518-523 ◽  
pp. 5533-5538
Author(s):  
Ting Wang ◽  
Liang Liang Wang ◽  
Xun Li

Cytochrome P450 monooxygenases are enzymes which are capable of oxidising saturated and unsaturated substrates. P450BM3 from Bacillus megaterium is one of this family. For the first time, the cyp gene for coding P450BM3 from B. megaterium ALA2 has been cloned and expressed in Escherichia coli. The recombinant enzyme is 120 kDa, containing 1049 aa. The highest activity of purified enzyme is 14.8 U/mg towards palmitic acid by monitoring the NADPH oxidation. The optimal pH and temperature were 9.0 and 40°C. The enzyme has higher activity towards linoleic acid, and 2-Methyl-7-octadecene can also be catalyzed which is a precursor of displar.


2016 ◽  
Vol 171 (4) ◽  
pp. 2458-2467 ◽  
Author(s):  
Naoyuki Umemoto ◽  
Masaru Nakayasu ◽  
Kiyoshi Ohyama ◽  
Mari Yotsu-Yamashita ◽  
Masaharu Mizutani ◽  
...  

2005 ◽  
Vol 71 (11) ◽  
pp. 6968-6976 ◽  
Author(s):  
Volker Jungmann ◽  
István Molnár ◽  
Philip E. Hammer ◽  
D. Steven Hill ◽  
Ross Zirkle ◽  
...  

ABSTRACT 4"-Oxo-avermectin is a key intermediate in the manufacture of the agriculturally important insecticide emamectin benzoate from the natural product avermectin. Seventeen biocatalytically active Streptomyces strains with the ability to oxidize avermectin to 4"-oxo-avermectin in a regioselective manner have been discovered in a screen of 3,334 microorganisms. The enzymes responsible for this oxidation reaction in these biocatalytically active strains were found to be cytochrome P450 monooxygenases (CYPs) and were termed Ema1 to Ema17. The genes for Ema1 to Ema17 have been cloned, sequenced, and compared to reveal a new subfamily of CYPs. Ema1 to Ema16 have been overexpressed in Escherichia coli and purified as His-tagged recombinant proteins, and their basic enzyme kinetic parameters have been determined.


Toxicology ◽  
1994 ◽  
Vol 93 (2-3) ◽  
pp. 165-173 ◽  
Author(s):  
Morio Fukuhara ◽  
Eric Antignac ◽  
Naomi Fukusen ◽  
Kazue Kato ◽  
Masanobu Kimura

Catalysts ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 624 ◽  
Author(s):  
Wanda Mączka ◽  
Katarzyna Wińska ◽  
Małgorzata Grabarczyk

The production of chiral sulphoxides is an important part of the chemical industry since they have been used not only as pharmaceuticals and pesticides, but also as catalysts or functional materials. The main purpose of this review is to present biotechnological methods for the oxidation of sulfides. The work consists of two parts. In the first part, examples of biosyntransformation of prochiral sulfides using whole cells of bacteria and fungi are discussed. They have more historical significance due to the low predictability of positive results in relation to the workload. In the second part, the main enzymes responsible for sulfoxidation have been characterized such as chloroperoxidase, dioxygenases, cytochrome flavin-dependent monooxygenases, and P450 monooxygenases. Particular emphasis has been placed on the huge variety of cytochrome P450 monooxygenases, and flavin-dependent monooxygenases, which allows for pure sulfoxides enantiomers effectively to be obtained. In the summary, further directions of research on the optimization of enzymatic sulfoxidation are indicated.


Sign in / Sign up

Export Citation Format

Share Document