Tenuazonic acid production is dispensable for virulence, but its biosynthetic gene expression pattern is associated with the infection of Pyricularia oryzae

Author(s):  
Takeshi Kashiwa ◽  
Takayuki Motoyama ◽  
Kazuko Yoshida ◽  
Choong-Soo Yun ◽  
Hiroyuki Osada

Abstract Tenuazonic acid (TeA) is a toxin produced by the rice blast fungus Pyricularia oryzae. Although knockout of the TeA biosynthetic gene TAS1 did not affect the virulence of P. oryzae, constitutive TAS1 expression suppressed its infection. TAS1 expression was induced alongside transition of P. oryzae infection behavior. The results suggested that controlling TeA biosynthesis is important for P. oryzae infection.

Molecules ◽  
2016 ◽  
Vol 21 (5) ◽  
pp. 621 ◽  
Author(s):  
Li-Jun Zhou ◽  
Fu-Rong Li ◽  
Li-Jie Huang ◽  
Zhi-Rong Yang ◽  
Shu Yuan ◽  
...  

2020 ◽  
Vol 11 ◽  
Author(s):  
Akihiro Ninomiya ◽  
Syun-ichi Urayama ◽  
Rei Suo ◽  
Shiro Itoi ◽  
Shin-ichi Fuji ◽  
...  

Author(s):  
Aravind P ◽  
Sarojini R. Bulbule ◽  
Hemalatha N ◽  
Anushree G ◽  
Babu R.L ◽  
...  

Abstract Background Free radicals generated in the biological system bring about modifications in biological molecules causing damage to their structure and function. Identifying the damage caused by ROS and RNS is important to predict the pathway of apoptosis due to stress in PC12 cells. The first defense mechanisms against them are antioxidants which act in various pathways through important cellular organelles like the mitochondria and endoplasmic reticulum. Specific biomarkers like Gadd153 which is a marker for endoplasmic reticulum stress, Nrf2 which responds to the redox changes and translocates the antioxidant response elements, and Btg2 which is an antioxidant regulator have not been addressed in different stress conditions previously in PC12 cells. Therefore, the study was conducted to analyze the gene expression pattern (SOD, Catalase, Btg2, Gadd153, and Nrf2) and the protein expression pattern (iNOS and MnSOD) of the antioxidant stress markers in differential stress-induced PC12 cells. Peroxynitrite (1 μM), rotenone (1 μM), H2O2(100 mM), and high glucose (33 mM) were used to induce oxidative and nitrosative stress in PC12 cells. Results The results obtained suggested that rotenone-induced PC12 cells showed a significant increase in the expression of catalase, Btg2, and Gadd153 compared to the control. Peroxynitrite-induced PC12 cells showed higher expression of Btg2 compared to the control. H2O2 and high glucose showed lesser expression compared to the control in all stress marker genes. In contrast, the Nrf2 gene expression is downregulated in all the stress-induced PC12 cells compared to the control. Further, MnSOD and iNOS protein expression studies suggest that PC12 cells exhibit a selective downregulation. Lower protein expression of MnSOD and iNOS may be resulted due to the mitochondrial dysfunction in peroxynitrite-, high glucose-, and H2O2-treated cells, whereas rotenone-induced cells showed lower expression, which could be the result of a dysfunction of the endoplasmic reticulum. Conclusion Different stress inducers like rotenone, peroxynitrite, H2O2, and high glucose increase the NO and ROS. Btg2 and Gadd153 genes were upregulated in the stress-induced cells, whereas the Nrf2 was significantly downregulated in differential stress-induced PC12 cells. Further, antioxidant marker genes were differentially expressed with different stress inducers.


2003 ◽  
Vol 73 (5) ◽  
pp. 667-678 ◽  
Author(s):  
Agata Matejuk ◽  
Corwyn Hopke ◽  
Jami Dwyer ◽  
Sandhya Subramanian ◽  
Richard E. Jones ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document