Strong sexual selection despite spatial constraints on extrapair paternity

2020 ◽  
Vol 31 (3) ◽  
pp. 618-626 ◽  
Author(s):  
Emily R A Cramer ◽  
Emma I Greig ◽  
Sara A Kaiser

Abstract Extrapair paternity should contribute to sexual selection by increasing the number of potential mates available to each individual. Potential copulation partners are, however, limited by their proximity. Spatial constraints may therefore reduce the impact of extrapair paternity on sexual selection. We tested the effect of spatial constraints on sexual selection by simulating extrapair copulations for 15 species of socially monogamous songbirds with varying rates of extrapair paternity. We compared four metrics of sexual selection between simulated populations without spatial constraints and populations where extrapair copulations were restricted to first- and second-order neighbors. Counter to predictions, sexual selection as measured by the Bateman gradient (the association between the number of copulation partners and offspring produced) increased under spatial constraints. In these conditions, repeated extrapair copulations between the same individuals led to more offspring per copulation partner. In contrast, spatial constraints did somewhat reduce sexual selection—as measured by the opportunity for selection, s’max, and the selection gradient on male quality—when the association between simulated male quality scores and copulation success (e.g., female preferences or male–male competition) was strong. Sexual selection remained strong overall in those populations even under spatial constraints. Spatial constraints did not substantially reduce sexual selection when the association between male quality and copulation success was moderate or weak. Thus, spatial constraints on extrapair copulations are insufficient to explain the absence of strong selection on male traits in many species.

The Auk ◽  
2004 ◽  
Vol 121 (3) ◽  
pp. 788-795
Author(s):  
Bruce E. Byers ◽  
Herman L. Mays ◽  
Ian R. K. Stewart ◽  
David F. Westneat

Abstract A monogamous mating system that includes extrapair fertilization can potentially generate higher variability in male reproductive success than monogamy without extrapair fertilization. That increased variability could provide a correspondingly higher opportunity for sexual selection and, thus, for the origin and persistence of sexual dimorphism in monogamous species. To determine whether extrapair fertilization enhanced the opportunity for sexual selection in a sexually dimorphic, monogamous bird species, we used microsatellite DNA typing to assess the prevalence of extrapair fertilization and its effect on variation in male reproductive success in a population of Chestnut-sided Warblers (Dendroica pensylvanica). We found that the level of extrapair fertilization in our study population was at the upper end of the range reported for bird populations (47% of nestlings had extrapair fathers; 61% of broods contained extrapair offspring). We also discovered that almost all extrapair offspring were sired by paired males resident on nearby territories. In addition, we found that variation in male reproductive success was substantially higher than variation in female reproductive success, and that extrapair fertilizations made a significant contribution to variation in male reproductive success. Together, those findings suggest that extrapair fertilization creates an opportunity for sexual selection on male traits in this population.


2007 ◽  
Vol 18 (6) ◽  
pp. 985-993 ◽  
Author(s):  
A. C. Dolan ◽  
M. T. Murphy ◽  
L. J. Redmond ◽  
K. Sexton ◽  
D. Duffield

The Auk ◽  
2008 ◽  
Vol 125 (4) ◽  
pp. 769-777 ◽  
Author(s):  
REGINA H. MACEDO ◽  
JORDAN KARUBIAN ◽  
MICHAEL S. WEBSTER

2019 ◽  
Author(s):  
Gao Ke ◽  
Michiel van Wijk ◽  
Zoe Clement ◽  
Martijn Egas ◽  
Astrid Groot

Abstract Background Ever since Darwin, evolutionary biologists have studied sexual selection driving differences in appearance and behaviour between males and females. An unchallenged paradigm in such studies is that one sex (usually the male) signals its quality as a mate to the other sex (usually the female), who is choosy in accepting a partner. Here, we argue that in polygamous species these roles may change dynamically with the mating status of males and females, depending on direct reproductive costs and benefits of multiple matings, and on sperm competition. We test this hypothesis using a polygamous moth species, as in moths not males but females are the signalers and males are the responders. Results We found that multiple matings are beneficial as well as costly for both sexes. Specifically, the number of matings did not affect the longevity of males or females, but when paired with a new virgin mate every night for five nights, only 67% of the males and 14% of the females mated successfully in all five nights. The female’s reproductive output increased with multiple matings, although when paired with a new virgin male every night, additional matings beyond 3 decreased her reproductive output, so that the Bateman gradient for females fit a quadratic model better than a linear model. The male’s reproductive success was positively affected by the number of matings and a linear regression line best fit the data. Simulations of the effect of sperm competition showed that increasing last-male paternity increases the steepness of the male Bateman gradient and thus the male’s relative fitness gain from additional mating. Irrespective of last-male paternity value, the female Bateman gradient is steeper than the male one for up to three matings. Conclusion Our results suggest that choosiness in moths may well change throughout the mating season, with males being more choosy early in the season and females being more choosy after having mated at least three times. This life-history perspective on the costs and benefits of multiple matings for both sexes sheds new light on sexual selection forces acting on sexual signals and responses.


2021 ◽  
Vol 17 (9) ◽  
pp. 20210251
Author(s):  
Tim Janicke ◽  
Salomé Fromonteil

Sexual selection is often considered as a critical evolutionary force promoting sexual size dimorphism (SSD) in animals. However, empirical evidence for a positive relationship between sexual selection on males and male-biased SSD received mixed support depending on the studied taxonomic group and on the method used to quantify sexual selection. Here, we present a meta-analytic approach accounting for phylogenetic non-independence to test how standardized metrics of the opportunity and strength of pre-copulatory sexual selection relate to SSD across a broad range of animal taxa comprising up to 95 effect sizes from 59 species. We found that SSD based on length measurements was correlated with the sex difference in the opportunity for sexual selection but showed a weak and statistically non-significant relationship with the sex difference in the Bateman gradient. These findings suggest that pre-copulatory sexual selection plays a limited role for the evolution of SSD in a broad phylogenetic context.


Evolution ◽  
2016 ◽  
Vol 71 (1) ◽  
pp. 174-183 ◽  
Author(s):  
Courtney L. Fitzpatrick ◽  
Maria R. Servedio

Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 407 ◽  
Author(s):  
Dominik Dominković ◽  
Goran Krajačić

The energy transition of future urban energy systems is still the subject of an ongoing debate. District energy supply can play an important role in reducing the total socio-economic costs of energy systems and primary energy supply. Although lots of research was done on integrated modelling including district heating, there is a lack of research on integrated energy modelling including district cooling. This paper addressed the latter gap using linear continuous optimization model of the whole energy system, using Singapore for a case study. Results showed that optimal district cooling share was 30% of the total cooling energy demand for both developed scenarios, one that took into account spatial constraints for photovoltaics installation and the other one that did not. In the scenario that took into account existing spatial constraints for installations, optimal capacities of methane and thermal energy storage types were much larger than capacities of grid battery storage, battery storage in vehicles and hydrogen storage. Grid battery storage correlated with photovoltaics capacity installed in the energy system. Furthermore, it was shown that successful representation of long-term storage solutions in urban energy models reduced the total socio-economic costs of the energy system for 4.1%.


Evolution ◽  
1997 ◽  
Vol 51 (2) ◽  
pp. 620-621 ◽  
Author(s):  
Thomas A. Waite ◽  
Patricia G. Parker

2017 ◽  
Vol 115 (1) ◽  
pp. E53-E61 ◽  
Author(s):  
Grant C. McDonald ◽  
Tommaso Pizzari

Sexual selection is a fundamental evolutionary process but remains debated, particularly in the complexity of polyandrous populations where females mate with multiple males. This lack of resolution is partly because studies have largely ignored the structure of the sexual network, that is, the pattern of mate sharing. Here, we quantify what we call mating assortment with network analysis to specify explicitly the indirect as well as direct relationships between partners. We first review empirical studies, showing that mating assortment varies considerably in nature, due largely to basic properties of the sexual network (size and density) and partly to nonrandom patterns of mate sharing. We then use simulations to show how variation in mating assortment interacts with population-level polyandry to determine the strength of sexual selection on males. Controlling for average polyandry, positive mating assortment, arising when more polygynous males tend to mate with more polyandrous females, drastically decreases the intensity of precopulatory sexual selection on male mating success (Bateman gradient) and the covariance between male mating success and postcopulatory paternity share. Average polyandry independently weakened some measures of sexual selection and crucially also impacted sexual selection indirectly by constraining mating assortment through the saturation of the mating network. Mating assortment therefore represents a key—albeit overlooked—modulator of the strength of sexual selection. Our results show that jointly considering sexual network structure and average polyandry more precisely describes the strength of sexual selection.


Sign in / Sign up

Export Citation Format

Share Document