scholarly journals Inferring TF activities and activity regulators from gene expression data with constraints from TF perturbation data

Author(s):  
Cynthia Z Ma ◽  
Michael R Brent

Abstract Motivation The activity of a transcription factor (TF) in a sample of cells is the extent to which it is exerting its regulatory potential. Many methods of inferring TF activity from gene expression data have been described, but due to the lack of appropriate large-scale datasets, systematic and objective validation has not been possible until now. Results We systematically evaluate and optimize the approach to TF activity inference in which a gene expression matrix is factored into a condition-independent matrix of control strengths and a condition-dependent matrix of TF activity levels. We find that expression data in which the activities of individual TFs have been perturbed are both necessary and sufficient for obtaining good performance. To a considerable extent, control strengths inferred using expression data from one growth condition carry over to other conditions, so the control strength matrices derived here can be used by others. Finally, we apply these methods to gain insight into the upstream factors that regulate the activities of yeast TFs Gcr2, Gln3, Gcn4 and Msn2. Availability and implementation Evaluation code and data are available at https://doi.org/10.5281/zenodo.4050573. Contact [email protected] Supplementary information Supplementary data are available at Bioinformatics online.

2020 ◽  
Author(s):  
Cynthia Ma ◽  
Michael R. Brent

ABSTRACTBackgroundThe activity of a transcription factor (TF) in a sample of cells is the extent to which it is exerting its regulatory potential. Many methods of inferring TF activity from gene expression data have been described, but due to the lack of appropriate large-scale datasets, systematic and objective validation has not been possible until now.ResultsUsing a new dataset, we systematically evaluate and optimize the approach to TF activity inference in which a gene expression matrix is factored into a condition-independent matrix of control strengths and a condition-dependent matrix of TF activity levels. These approaches require a TF network map, which specifies the target genes of each TF, as input. We evaluate different approaches to building the network map and deriving constraints on the matrices. We find that such constraints are essential for good performance. Constraints can be obtained from expression data in which the activities of individual TFs have been perturbed, and we find that such data are both necessary and sufficient for obtaining good performance. Remaining uncertainty about whether a TF activates or represses a target is a major source of error. To a considerable extent, control strengths inferred using expression data from one growth condition carry over to other conditions. As a result, the control strength matrices derived here can be used for other applications. Finally, we apply these methods to gain insight into the upstream factors that regulate the activities of four yeast TFs: Gcr2, Gln3, Gcn4, and Msn2. Evaluation code and data available at https://github.com/BrentLab/TFA-evaluationConclusionsWhen a high-quality network map, constraints, and perturbation-response data are available, inferring TF activity levels by factoring gene expression matrices is effective. Furthermore, it provides insight into regulators of TF activity.


2019 ◽  
Vol 36 (4) ◽  
pp. 1143-1149 ◽  
Author(s):  
Juan Xie ◽  
Anjun Ma ◽  
Yu Zhang ◽  
Bingqiang Liu ◽  
Sha Cao ◽  
...  

Abstract Motivation The biclustering of large-scale gene expression data holds promising potential for detecting condition-specific functional gene modules (i.e. biclusters). However, existing methods do not adequately address a comprehensive detection of all significant bicluster structures and have limited power when applied to expression data generated by RNA-Sequencing (RNA-Seq), especially single-cell RNA-Seq (scRNA-Seq) data, where massive zero and low expression values are observed. Results We present a new biclustering algorithm, QUalitative BIClustering algorithm Version 2 (QUBIC2), which is empowered by: (i) a novel left-truncated mixture of Gaussian model for an accurate assessment of multimodality in zero-enriched expression data, (ii) a fast and efficient dropouts-saving expansion strategy for functional gene modules optimization using information divergency and (iii) a rigorous statistical test for the significance of all the identified biclusters in any organism, including those without substantial functional annotations. QUBIC2 demonstrated considerably improved performance in detecting biclusters compared to other five widely used algorithms on various benchmark datasets from E.coli, Human and simulated data. QUBIC2 also showcased robust and superior performance on gene expression data generated by microarray, bulk RNA-Seq and scRNA-Seq. Availability and implementation The source code of QUBIC2 is freely available at https://github.com/OSU-BMBL/QUBIC2. Supplementary information Supplementary data are available at Bioinformatics online.


2017 ◽  
Author(s):  
Patryk Orzechowski ◽  
Artur Pańszczyk ◽  
Xiuzhen Huang ◽  
Jason H. Moore

AbstractMotivationBiclustering (called also co-clustering) is an unsupervised technique of simultaneous analysis of rows and columns of input matrix. From the first application to gene expression data, multiple algorithms have been proposed. Only a handful of them were able to provide accurate results and were fast enough to be suitable for large-scale genomic datasets.ResultsIn this paper we introduce a Bioconductor package with parallel version of UniBic biclustering algorithm: one of the most accurate biclustering methods that have been developed so far. For the convenience of usage, we have wrapped the algorithm in an R package called runibic. The package includes: (1) a couple of times faster parallel version of the original sequential algorithm,(2) muchmore efficient memory management, (3) modularity which allows to build new methods on top of the provided one, (4) integration with the modern Bioconductor packages such as SummarizedExperiment, ExpressionSetand biclust.AvailabilityThe package is implemented in R (3.4) and will be available in the new release of Bioconductor (3.6). Currently it could be downloaded from the following URL: http://github.com/athril/runibic/[email protected], [email protected] informationSupplementary informations are available in vignette of the package.


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 772
Author(s):  
Seonghun Kim ◽  
Seockhun Bae ◽  
Yinhua Piao ◽  
Kyuri Jo

Genomic profiles of cancer patients such as gene expression have become a major source to predict responses to drugs in the era of personalized medicine. As large-scale drug screening data with cancer cell lines are available, a number of computational methods have been developed for drug response prediction. However, few methods incorporate both gene expression data and the biological network, which can harbor essential information about the underlying process of the drug response. We proposed an analysis framework called DrugGCN for prediction of Drug response using a Graph Convolutional Network (GCN). DrugGCN first generates a gene graph by combining a Protein-Protein Interaction (PPI) network and gene expression data with feature selection of drug-related genes, and the GCN model detects the local features such as subnetworks of genes that contribute to the drug response by localized filtering. We demonstrated the effectiveness of DrugGCN using biological data showing its high prediction accuracy among the competing methods.


2020 ◽  
Author(s):  
Benedict Hew ◽  
Qiao Wen Tan ◽  
William Goh ◽  
Jonathan Wei Xiong Ng ◽  
Kenny Koh ◽  
...  

AbstractBacterial resistance to antibiotics is a growing problem that is projected to cause more deaths than cancer in 2050. Consequently, novel antibiotics are urgently needed. Since more than half of the available antibiotics target the bacterial ribosomes, proteins that are involved in protein synthesis are thus prime targets for the development of novel antibiotics. However, experimental identification of these potential antibiotic target proteins can be labor-intensive and challenging, as these proteins are likely to be poorly characterized and specific to few bacteria. In order to identify these novel proteins, we established a Large-Scale Transcriptomic Analysis Pipeline in Crowd (LSTrAP-Crowd), where 285 individuals processed 26 terabytes of RNA-sequencing data of the 17 most notorious bacterial pathogens. In total, the crowd processed 26,269 RNA-seq experiments and used the data to construct gene co-expression networks, which were used to identify more than a hundred uncharacterized genes that were transcriptionally associated with protein synthesis. We provide the identity of these genes together with the processed gene expression data. The data can be used to identify other vulnerabilities or bacteria, while our approach demonstrates how the processing of gene expression data can be easily crowdsourced.


2004 ◽  
Vol 20 (13) ◽  
pp. 1993-2003 ◽  
Author(s):  
J. Ihmels ◽  
S. Bergmann ◽  
N. Barkai

Sign in / Sign up

Export Citation Format

Share Document