scholarly journals BNArray: an R package for constructing gene regulatory networks from microarray data by using Bayesian network

2006 ◽  
Vol 22 (23) ◽  
pp. 2952-2954 ◽  
Author(s):  
X. Chen ◽  
M. Chen ◽  
K. Ning
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Luis F. Iglesias-Martinez ◽  
Barbara De Kegel ◽  
Walter Kolch

AbstractReconstructing gene regulatory networks is crucial to understand biological processes and holds potential for developing personalized treatment. Yet, it is still an open problem as state-of-the-art algorithms are often not able to process large amounts of data within reasonable time. Furthermore, many of the existing methods predict numerous false positives and have limited capabilities to integrate other sources of information, such as previously known interactions. Here we introduce KBoost, an algorithm that uses kernel PCA regression, boosting and Bayesian model averaging for fast and accurate reconstruction of gene regulatory networks. We have benchmarked KBoost against other high performing algorithms using three different datasets. The results show that our method compares favorably to other methods across datasets. We have also applied KBoost to a large cohort of close to 2000 breast cancer patients and 24,000 genes in less than 2 h on standard hardware. Our results show that molecularly defined breast cancer subtypes also feature differences in their GRNs. An implementation of KBoost in the form of an R package is available at: https://github.com/Luisiglm/KBoost and as a Bioconductor software package.


2012 ◽  
pp. 1-6
Author(s):  
Ai Kung Tan ◽  
Mohd Saberi Mohamad

In this research, Bayesian network is proposed as the model to construct gene regulatory networks from Saccharomyces cerevisiae cell-cycle gene expression dataset and Escherichia coli dataset due to its capability of handling microarray datasets with missing values. The goal of this research is to study and to understand the framework of the Bayesian networks, and then to construct gene regulatory networks from Saccharomyces cerevisiae cell-cycle gene expression dataset and Escherichia coli dataset by developing Bayesian networks using hill-climbing algorithm and Efron’s bootstrap approach and then the performance of the constructed gene networks of Saccharomyces cerevisiae are evaluated and are compared with the previously constructed sub-networks by Dejori [14]. At the end of this research, the gene networks constructed for Saccharomyces cerevisiae not only have achieved high True Positive Rate (more than 90%), but the networks constructed also have discovered more potential interactions between genes. Therefore, it can be concluded that the performance of the gene regulatory networks constructed using Bayesian networks in this research is proved to be better because it can reveal more gene relationships. Dalam penyelidikan ini, Bayesian network adalah dicadangkan sebagai model untuk membina gene regulatory networks dari kitar sel S. cerevisiae set data disebabkan keupayaannya untuk mengendali set data microarray yang mempunyai nilai-nilai yang hilang. Tujuan penyelidikan ini adalah untuk mempelajari dan memahami rekabentuk untuk Bayesian network, dan kemudian untuk membina gene regulatory networks dari data Saccharomyces cerevisiae cell-cycle gene expression dan data Escherichia coli dengan membina model Bayesian networks dengan menggunakan algoritma hill-climbing serta Efron’s bootstrap approach dan gene networks yang dibina untuk Saccharomyces cerevisiae dibandingkan dengan sub-networks yang dibina oleh Dejori [14]. Pada akhir kajian ini, gene networks yang dibina untuk Saccharomyces cerevisiae bukan sahaja telah mencapai True Positive Rate yang tinggi (lebih dari 90%), tetapi gene networks yang dibina juga telah menemui lebih banyak interaksi berpotensi antara gen. Oleh kerana itu, dapat disimpulkan bahawa prestasi gene networks yang dibina menggunakan Bayesian network dalam kajian ini adalah terbukti lebih baik kerana ia boleh mendedahkan lebih banyak hubungan antara gen.


BMC Genomics ◽  
2010 ◽  
Vol 11 (Suppl 2) ◽  
pp. S6 ◽  
Author(s):  
David Oviatt ◽  
Mark Clement ◽  
Quinn Snell ◽  
Kenneth Sundberg ◽  
Chun Wan J Lai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document