scholarly journals MAJIQ-SPEL: web-tool to interrogate classical and complex splicing variations from RNA-Seq data

2017 ◽  
Vol 34 (2) ◽  
pp. 300-302 ◽  
Author(s):  
Christopher J Green ◽  
Matthew R Gazzara ◽  
Yoseph Barash

Abstract Summary Analysis of RNA sequencing (RNA-Seq) data have highlighted the fact that most genes undergo alternative splicing (AS) and that these patterns are tightly regulated. Many of these events are complex, resulting in numerous possible isoforms that quickly become difficult to visualize, interpret and experimentally validate. To address these challenges we developed MAJIQ-SPEL, a web-tool that takes as input local splicing variations (LSVs) quantified from RNA-Seq data and provides users with visualization and quantification of gene isoforms associated with those. Importantly, MAJIQ-SPEL is able to handle both classical (binary) and complex, non-binary, splicing variations. Using a matching primer design algorithm it also suggests to users possible primers for experimental validation by RT-PCR and displays those, along with the matching protein domains affected by the LSV, on UCSC Genome Browser for further downstream analysis. Availability and implementation Program and code will be available athttp://majiq.biociphers.org/majiq-spel. Supplementary information Supplementary data are available atBioinformatics online.

2017 ◽  
Author(s):  
Christopher J. Green ◽  
Matthew R. Gazzara ◽  
Yoseph Barash

AbstractAnalysis of RNA sequencing (RNA-Seq) data have highlighted the fact that most genes undergo alternative splicing (AS) and that these patterns are tightly regulated. Many of these events are complex, resulting in numerous possible isoforms that quickly become difficult to visualize, interpret, and experimentally validate. To address these challenges, We developed MAJIQ-SPEL, a web-tool that takes as input local splicing variations (LSVs) quantified from RNA-Seq data and provides users with visualization and quantification of gene isoforms associated with those. Importantly, MAJIQ-SPEL is able to handle both classical (binary) and complex (non-binary) splicing variations. Using a matching primer design algorithm it also suggests users possible primers for experimental validation by RT-PCR and displays those, along with the matching protein domains affected by the LSV, on UCSC Genome Browser for further downstream analysis.Availability: Program and code will be available at http://majiq.biociphers.org/majiq-spel


2019 ◽  
Vol 35 (22) ◽  
pp. 4757-4759 ◽  
Author(s):  
Vivek Bhardwaj ◽  
Steffen Heyne ◽  
Katarzyna Sikora ◽  
Leily Rabbani ◽  
Michael Rauer ◽  
...  

Abstract Summary Due to the rapidly increasing scale and diversity of epigenomic data, modular and scalable analysis workflows are of wide interest. Here we present snakePipes, a workflow package for processing and downstream analysis of data from common epigenomic assays: ChIP-seq, RNA-seq, Bisulfite-seq, ATAC-seq, Hi-C and single-cell RNA-seq. snakePipes enables users to assemble variants of each workflow and to easily install and upgrade the underlying tools, via its simple command-line wrappers and yaml files. Availability and implementation snakePipes can be installed via conda: `conda install -c mpi-ie -c bioconda -c conda-forge snakePipes’. Source code (https://github.com/maxplanck-ie/snakepipes) and documentation (https://snakepipes.readthedocs.io/en/latest/) are available online. Supplementary information Supplementary data are available at Bioinformatics online.


2017 ◽  
Author(s):  
Zhun Miao ◽  
Ke Deng ◽  
Xiaowo Wang ◽  
Xuegong Zhang

AbstractSummaryThe excessive amount of zeros in single-cell RNA-seq data include “real” zeros due to the on-off nature of gene transcription in single cells and “dropout” zeros due to technical reasons. Existing differential expression (DE) analysis methods cannot distinguish these two types of zeros. We developed an R package DEsingle which employed Zero-Inflated Negative Binomial model to estimate the proportion of real and dropout zeros and to define and detect 3 types of DE genes in single-cell RNA-seq data with higher accuracy.Availability and ImplementationThe R package DEsingle is freely available at https://github.com/miaozhun/DEsingle and is under Bioconductor’s consideration [email protected] informationSupplementary data are available at bioRxiv online.


2019 ◽  
Vol 35 (19) ◽  
pp. 3839-3841 ◽  
Author(s):  
Artem Babaian ◽  
I Richard Thompson ◽  
Jake Lever ◽  
Liane Gagnier ◽  
Mohammad M Karimi ◽  
...  

Abstract Summary Transposable elements (TEs) influence the evolution of novel transcriptional networks yet the specific and meaningful interpretation of how TE-derived transcriptional initiation contributes to the transcriptome has been marred by computational and methodological deficiencies. We developed LIONS for the analysis of RNA-seq data to specifically detect and quantify TE-initiated transcripts. Availability and implementation Source code, container, test data and instruction manual are freely available at www.github.com/ababaian/LIONS. Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Vol 35 (22) ◽  
pp. 4854-4856 ◽  
Author(s):  
James D Stephenson ◽  
Roman A Laskowski ◽  
Andrew Nightingale ◽  
Matthew E Hurles ◽  
Janet M Thornton

Abstract Motivation Understanding the protein structural context and patterning on proteins of genomic variants can help to separate benign from pathogenic variants and reveal molecular consequences. However, mapping genomic coordinates to protein structures is non-trivial, complicated by alternative splicing and transcript evidence. Results Here we present VarMap, a web tool for mapping a list of chromosome coordinates to canonical UniProt sequences and associated protein 3D structures, including validation checks, and annotating them with structural information. Availability and implementation https://www.ebi.ac.uk/thornton-srv/databases/VarMap. Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Vol 36 (6) ◽  
pp. 1779-1784 ◽  
Author(s):  
Chuanqi Wang ◽  
Jun Li

Abstract Motivation Scaling by sequencing depth is usually the first step of analysis of bulk or single-cell RNA-seq data, but estimating sequencing depth accurately can be difficult, especially for single-cell data, risking the validity of downstream analysis. It is thus of interest to eliminate the use of sequencing depth and analyze the original count data directly. Results We call an analysis method ‘scale-invariant’ (SI) if it gives the same result under different estimates of sequencing depth and hence can use the original count data without scaling. For the problem of classifying samples into pre-specified classes, such as normal versus cancerous, we develop a deep-neural-network based SI classifier named scale-invariant deep neural-network classifier (SINC). On nine bulk and single-cell datasets, the classification accuracy of SINC is better than or competitive to the best of eight other classifiers. SINC is easier to use and more reliable on data where proper sequencing depth is hard to determine. Availability and implementation This source code of SINC is available at https://www.nd.edu/∼jli9/SINC.zip. Supplementary information Supplementary data are available at Bioinformatics online.


2018 ◽  
Author(s):  
LM Simon ◽  
G Tsitsiridis ◽  
P Angerer ◽  
FJ Theis

AbstractMotivationThe MetaMap resource contains metatranscriptomic expression data from screening >17,000 RNA-seq samples from >400 archived human disease-related studies for viral and microbial reads, so-called “metafeatures”. However, navigating this set of large and heterogeneous data is challenging, especially for researchers without bioinformatic expertise. Therefore, a user-friendly interface is needed that allows users to visualize and statistically analyse the data.ResultsWe developed an interactive frontend to facilitate the exploration of the MetaMap resource. The webtool allows users to query the resource by searching study abstracts for keywords or browsing expression patterns for specific metafeatures. Moreover, users can manually define sample groupings or use the existing annotation for downstream analysis. The web tool provides a large variety of analyses and visualizations including dimension reduction, differential abundance analysis and Krona visualizations. The MetaMap webtool represents a valuable resource for hypothesis generation regarding the impact of the microbiome in human disease.AvailabilityThe presented web tool can be accessed at https://github.com/theislab/MetaMap


Author(s):  
Davide Risso ◽  
Stefano Maria Pagnotta

Abstract Motivation Data transformations are an important step in the analysis of RNA-seq data. Nonetheless, the impact of transformation on the outcome of unsupervised clustering procedures is still unclear. Results Here, we present an Asymmetric Winsorization per Sample Transformation (AWST), which is robust to data perturbations and removes the need for selecting the most informative genes prior to sample clustering. Our procedure leads to robust and biologically meaningful clusters both in bulk and in single-cell applications. Availability The AWST method is available at https://github.com/drisso/awst. The code to reproduce the analyses is available at https://github.com/drisso/awst\_analysis. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 36 (Supplement_1) ◽  
pp. i102-i110
Author(s):  
Hirak Sarkar ◽  
Avi Srivastava ◽  
Héctor Corrada Bravo ◽  
Michael I Love ◽  
Rob Patro

Abstract Motivation Advances in sequencing technology, inference algorithms and differential testing methodology have enabled transcript-level analysis of RNA-seq data. Yet, the inherent inferential uncertainty in transcript-level abundance estimation, even among the most accurate approaches, means that robust transcript-level analysis often remains a challenge. Conversely, gene-level analysis remains a common and robust approach for understanding RNA-seq data, but it coarsens the resulting analysis to the level of genes, even if the data strongly support specific transcript-level effects. Results We introduce a new data-driven approach for grouping together transcripts in an experiment based on their inferential uncertainty. Transcripts that share large numbers of ambiguously-mapping fragments with other transcripts, in complex patterns, often cannot have their abundances confidently estimated. Yet, the total transcriptional output of that group of transcripts will have greatly reduced inferential uncertainty, thus allowing more robust and confident downstream analysis. Our approach, implemented in the tool terminus, groups together transcripts in a data-driven manner allowing transcript-level analysis where it can be confidently supported, and deriving transcriptional groups where the inferential uncertainty is too high to support a transcript-level result. Availability and implementation Terminus is implemented in Rust, and is freely available and open source. It can be obtained from https://github.com/COMBINE-lab/Terminus. Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Vol 35 (22) ◽  
pp. 4767-4769 ◽  
Author(s):  
Charles E Breeze ◽  
Alex P Reynolds ◽  
Jenny van Dongen ◽  
Ian Dunham ◽  
John Lazar ◽  
...  

Abstract Summary The Illumina Infinium EPIC BeadChip is a new high-throughput array for DNA methylation analysis, extending the earlier 450k array by over 400 000 new sites. Previously, a method named eFORGE was developed to provide insights into cell type-specific and cell-composition effects for 450k data. Here, we present a significantly updated and improved version of eFORGE that can analyze both EPIC and 450k array data. New features include analysis of chromatin states, transcription factor motifs and DNase I footprints, providing tools for epigenome-wide association study interpretation and epigenome editing. Availability and implementation eFORGE v2.0 is implemented as a web tool available from https://eforge.altiusinstitute.org and https://eforge-tf.altiusinstitute.org/. Supplementary information Supplementary data are available at Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document