epigenome editing
Recently Published Documents


TOTAL DOCUMENTS

147
(FIVE YEARS 81)

H-INDEX

18
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Hosub Shin ◽  
Woo Lee Choi ◽  
Joo Young Lim ◽  
Jin Hoe Huh

Author(s):  
Paul Cheng ◽  
Robert C. Wirka ◽  
Lee Shoa Clarke ◽  
Quanyi Zhao ◽  
Ramendra Kundu ◽  
...  

Background: Smooth muscle cells (SMC) transition into a number of different phenotypes during atherosclerosis, including those that resemble fibroblasts and chondrocytes, and make up the majority of cells in the atherosclerotic plaque. To better understand the epigenetic and transcriptional mechanisms that mediate these cell state changes, and how they relate to risk for coronary artery disease (CAD), we have investigated the causality and function of transcription factors (TFs) at genome wide associated loci. Methods: We employed CRISPR-Cas 9 genome and epigenome editing to identify the causal gene and cell(s) for a complex CAD GWAS signal at 2q22.3. Subsequently, single-cell epigenetic and transcriptomic profiling in murine models and human coronary artery smooth muscle cells were employed to understand the cellular and molecular mechanism by which this CAD risk gene exerts its function. Results: CRISPR-Cas 9 genome and epigenome editing showed that the complex CAD genetic signals within a genomic region at 2q22.3 lie within smooth muscle long-distance enhancers for ZEB2 , a TF extensively studied in the context of epithelial mesenchymal transition (EMT) in development and cancer. ZEB2 regulates SMC phenotypic transition through chromatin remodeling that obviates accessibility and disrupts both Notch and TGFβ signaling, thus altering the epigenetic trajectory of SMC transitions. SMC specific loss of ZEB2 resulted in an inability of transitioning SMCs to turn off contractile programing and take on a fibroblast-like phenotype, but accelerated the formation of chondromyocytes, mirroring features of high-risk atherosclerotic plaques in human coronary arteries. Conclusions: These studies identify ZEB2 as a new CAD GWAS gene that affects features of plaque vulnerability through direct effects on the epigenome, providing a new thereapeutic approach to target vascular disease.


2021 ◽  
Vol 22 (24) ◽  
pp. 13524
Author(s):  
Ewelina A. Klupczyńska ◽  
Ewelina Ratajczak

Epigenetic modifications, including chromatin modifications and DNA methylation, play key roles in regulating gene expression in both plants and animals. Transmission of epigenetic markers is important for some genes to maintain specific expression patterns and preserve the status quo of the cell. This article provides a review of existing research and the current state of knowledge about DNA methylation in trees in the context of global climate change, along with references to the potential of epigenome editing tools and the possibility of their use for forest tree research. Epigenetic modifications, including DNA methylation, are involved in evolutionary processes, developmental processes, and environmental interactions. Thus, the implications of epigenetics are important for adaptation and phenotypic plasticity because they provide the potential for tree conservation in forest ecosystems exposed to adverse conditions resulting from global warming and regional climate fluctuations.


2021 ◽  
pp. 114087
Author(s):  
Hanan Bloomer ◽  
Jennifer Khirallah ◽  
Yamin Li ◽  
Qiaobing Xu

2021 ◽  
Vol 8 (3) ◽  
pp. 150-152
Author(s):  
Shefali Mehta ◽  
Aditi Mehta

The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas (CRISPR – Associated Proteins) systems are prokaryotic adaptive immune mechanisms that are used for cleaving the invading nucleic acids in nature. Due to this reason, the CRISPR-based tools are used in numerous applications like genome and transcriptome engineering, gene therapy, epigenome editing and many others. In addition, the issue of errors in these tests is also increasing at a very rapid pace, due to which their reliability and efficiency and effectiveness are getting severely hampered. Therefore, it may not be wrong to say that there is a still a lot more room for improvement and development to enable, widespread, rapid, and scalable testing of the COVID-19 virus. In this regard, the RT-qPCR tests can be used as a routine molecular diagnostic method for detecting any COVID-19 symptoms. However, there are various limitations that mar the use and implementation of the RT-qPCR tests. But a few of these shortcomings can be overcome by using alternative molecular diagnostic methods like the CRISPR based tests.


2021 ◽  
Author(s):  
Bin Yang ◽  
Alicia C Borgeaud ◽  
Marcela Buřičová ◽  
Lorène Aeschbach ◽  
Oscar Rodríguez-Lima ◽  
...  

Abstract Expanded CAG/CTG repeat disorders affect over 1 in 2500 individuals worldwide. Potential therapeutic avenues include gene silencing and modulation of repeat instability. However, there are major mechanistic gaps in our understanding of these processes, which prevent the rational design of an efficient treatment. To address this, we developed a novel system, ParB/ANCHOR-mediated Inducible Targeting (PInT), in which any protein can be recruited at will to a GFP reporter containing an expanded CAG/CTG repeat. Previous studies have implicated the histone deacetylase HDAC5 and the DNA methyltransferase DNMT1 as modulators of repeat instability via mechanisms that are not fully understood. Using PInT, we found no evidence that HDAC5 or DNMT1 modulate repeat instability upon targeting to the expanded repeat, suggesting that their effect is independent of local chromatin structure. Unexpectedly, we found that expanded CAG/CTG repeats reduce the effectiveness of gene silencing mediated by targeting HDAC5 and DNMT1. The repeat-length effect in gene silencing by HDAC5 was abolished by a small molecule inhibitor of HDAC3. Our results have important implications on the design of epigenome editing approaches for expanded CAG/CTG repeat disorders. PInT is a versatile synthetic system to study the effect of any sequence of interest on epigenome editing.


Epigenomes ◽  
2021 ◽  
Vol 5 (3) ◽  
pp. 17
Author(s):  
Annick Dubois ◽  
François Roudier

CRISPR-based epigenome editing uses dCas9 as a platform to recruit transcription or chromatin regulators at chosen loci. Despite recent and ongoing advances, the full potential of these approaches to studying chromatin functions in vivo remains challenging to exploit. In this review we discuss how recent progress in plants and animals provides new routes to investigate the function of chromatin regulators and address the complexity of associated regulations that are often interconnected. While efficient transcriptional engineering methodologies have been developed and can be used as tools to alter the chromatin state of a locus, examples of direct manipulation of chromatin regulators remain scarce in plants. These reports also reveal pitfalls and limitations of epigenome engineering approaches that are nevertheless informative as they are often associated with locus- and context-dependent features, which include DNA accessibility, initial chromatin and transcriptional state or cellular dynamics. Strategies implemented in different organisms to overcome and even take advantage of these limitations are highlighted, which will further improve our ability to establish the causality and hierarchy of chromatin dynamics on genome regulation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Weiye Zhao ◽  
Ying Xu ◽  
Yufan Wang ◽  
Dan Gao ◽  
Jasmine King ◽  
...  

AbstractEpigenome editing methods enable the precise manipulation of epigenetic modifications, such as histone posttranscriptional modifications (PTMs), for uncovering their biological functions. While histone PTMs have been correlated with certain gene expression status, the causalities remain elusive. Histone H3 Lysine 27 acetylation (H3K27ac) and histone H3 Lysine 4 trimethylation (H3K4me3) are both associated with active genes, and located at active promoters and enhancers or around transcriptional start sites (TSSs). Although crosstalk between histone lysine acetylation and H3K4me3 has been reported, relationships between specific epigenetic marks during transcriptional activation remain largely unclear. Here, using clustered regularly interspaced short palindromic repeats (CRISPR)/dCas-based epigenome editing methods, we discovered that the ectopic introduction of H3K27ac in the promoter region lead to H3K4me3 enrichment around TSS and transcriptional activation, while H3K4me3 installation at the promoter cannot induce H3K27ac increase and failed to activate gene expression. Blocking the reading of H3K27ac by BRD proteins using inhibitor JQ1 abolished H3K27ac-induced H3K4me3 installation and downstream gene activation. Furthermore, we uncovered that BRD2, not BRD4, mediated H3K4me3 installation and gene activation upon H3K27ac writing. Our studies revealed the relationships between H3K27ac and H3K4me3 in gene activation process and demonstrated the application of CRISPR/dCas-based epigenome editing methods in elucidating the crosstalk between epigenetic mechanisms.


Sign in / Sign up

Export Citation Format

Share Document