scholarly journals Computational modeling of cellular structures using conditional deep generative networks

2018 ◽  
Vol 35 (12) ◽  
pp. 2141-2149 ◽  
Author(s):  
Hao Yuan ◽  
Lei Cai ◽  
Zhengyang Wang ◽  
Xia Hu ◽  
Shaoting Zhang ◽  
...  

Abstract Motivation Cellular function is closely related to the localizations of its sub-structures. It is, however, challenging to experimentally label all sub-cellular structures simultaneously in the same cell. This raises the need of building a computational model to learn the relationships among these sub-cellular structures and use reference structures to infer the localizations of other structures. Results We formulate such a task as a conditional image generation problem and propose to use conditional generative adversarial networks for tackling it. We employ an encoder–decoder network as the generator and propose to use skip connections between the encoder and decoder to provide spatial information to the decoder. To incorporate the conditional information in a variety of different ways, we develop three different types of skip connections, known as the self-gated connection, encoder-gated connection and label-gated connection. The proposed skip connections are built based on the conditional information using gating mechanisms. By learning a gating function, the network is able to control what information should be passed through the skip connections from the encoder to the decoder. Since the gate parameters are also learned automatically, we expect that only useful spatial information is transmitted to the decoder to help image generation. We perform both qualitative and quantitative evaluations to assess the effectiveness of our proposed approaches. Experimental results show that our cGAN-based approaches have the ability to generate the desired sub-cellular structures correctly. Our results also demonstrate that the proposed approaches outperform the existing approach based on adversarial auto-encoders, and the new skip connections lead to improved performance. In addition, the localizations of generated sub-cellular structures by our approaches are consistent with observations in biological experiments. Availability and implementation The source code and more results are available at https://github.com/divelab/cgan/.

2020 ◽  
Vol 34 (07) ◽  
pp. 10981-10988
Author(s):  
Mengxiao Hu ◽  
Jinlong Li ◽  
Maolin Hu ◽  
Tao Hu

In conditional Generative Adversarial Networks (cGANs), when two different initial noises are concatenated with the same conditional information, the distance between their outputs is relatively smaller, which makes minor modes likely to collapse into large modes. To prevent this happen, we proposed a hierarchical mode exploring method to alleviate mode collapse in cGANs by introducing a diversity measurement into the objective function as the regularization term. We also introduced the Expected Ratios of Expansion (ERE) into the regularization term, by minimizing the sum of differences between the real change of distance and ERE, we can control the diversity of generated images w.r.t specific-level features. We validated the proposed algorithm on four conditional image synthesis tasks including categorical generation, paired and un-paired image translation and text-to-image generation. Both qualitative and quantitative results show that the proposed method is effective in alleviating the mode collapse problem in cGANs, and can control the diversity of output images w.r.t specific-level features.


2019 ◽  
Vol 2 (93) ◽  
pp. 64-68
Author(s):  
I. Konarieva ◽  
D. Pydorenko ◽  
O. Turuta

The given work considers the existing methods of text compression (finding keywords or creating summary) using RAKE, Lex Rank, Luhn, LSA, Text Rank algorithms; image generation; text-to-image and image-to-image translation including GANs (generative adversarial networks). Different types of GANs were described such as StyleGAN, GauGAN, Pix2Pix, CycleGAN, BigGAN, AttnGAN. This work aims to show ways to create illustrations for the text. First, key information should be obtained from the text. Second, this key information should be transformed into images. There were proposed several ways to transform keywords to images: generating images or selecting them from a dataset with further transforming like generating new images based on selected ow combining selected images e.g. with applying style from one image to another. Based on results, possibilities for further improving the quality of image generation were also planned: combining image generation with selecting images from a dataset, limiting topics of image generation.


2021 ◽  
Vol 15 ◽  
Author(s):  
Jiasong Wu ◽  
Xiang Qiu ◽  
Jing Zhang ◽  
Fuzhi Wu ◽  
Youyong Kong ◽  
...  

Generative adversarial networks and variational autoencoders (VAEs) provide impressive image generation from Gaussian white noise, but both are difficult to train, since they need a generator (or encoder) and a discriminator (or decoder) to be trained simultaneously, which can easily lead to unstable training. To solve or alleviate these synchronous training problems of generative adversarial networks (GANs) and VAEs, researchers recently proposed generative scattering networks (GSNs), which use wavelet scattering networks (ScatNets) as the encoder to obtain features (or ScatNet embeddings) and convolutional neural networks (CNNs) as the decoder to generate an image. The advantage of GSNs is that the parameters of ScatNets do not need to be learned, while the disadvantage of GSNs is that their ability to obtain representations of ScatNets is slightly weaker than that of CNNs. In addition, the dimensionality reduction method of principal component analysis (PCA) can easily lead to overfitting in the training of GSNs and, therefore, affect the quality of generated images in the testing process. To further improve the quality of generated images while keeping the advantages of GSNs, this study proposes generative fractional scattering networks (GFRSNs), which use more expressive fractional wavelet scattering networks (FrScatNets), instead of ScatNets as the encoder to obtain features (or FrScatNet embeddings) and use similar CNNs of GSNs as the decoder to generate an image. Additionally, this study develops a new dimensionality reduction method named feature-map fusion (FMF) instead of performing PCA to better retain the information of FrScatNets,; it also discusses the effect of image fusion on the quality of the generated image. The experimental results obtained on the CIFAR-10 and CelebA datasets show that the proposed GFRSNs can lead to better generated images than the original GSNs on testing datasets. The experimental results of the proposed GFRSNs with deep convolutional GAN (DCGAN), progressive GAN (PGAN), and CycleGAN are also given.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 1250-1260
Author(s):  
Muhammad Zeeshan Khan ◽  
Saira Jabeen ◽  
Muhammad Usman Ghani Khan ◽  
Tanzila Saba ◽  
Asim Rehmat ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document