conditional information
Recently Published Documents


TOTAL DOCUMENTS

108
(FIVE YEARS 25)

H-INDEX

14
(FIVE YEARS 1)

Author(s):  
Adrián Esteban-Pérez ◽  
Juan M. Morales

AbstractWe consider stochastic programs conditional on some covariate information, where the only knowledge of the possible relationship between the uncertain parameters and the covariates is reduced to a finite data sample of their joint distribution. By exploiting the close link between the notion of trimmings of a probability measure and the partial mass transportation problem, we construct a data-driven Distributionally Robust Optimization (DRO) framework to hedge the decision against the intrinsic error in the process of inferring conditional information from limited joint data. We show that our approach is computationally as tractable as the standard (without side information) Wasserstein-metric-based DRO and enjoys performance guarantees. Furthermore, our DRO framework can be conveniently used to address data-driven decision-making problems under contaminated samples. Finally, the theoretical results are illustrated using a single-item newsvendor problem and a portfolio allocation problem with side information.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yuqin Li ◽  
Ke Zhang ◽  
Weili Shi ◽  
Yu Miao ◽  
Zhengang Jiang

Medical image quality is highly relative to clinical diagnosis and treatment, leading to a popular research topic of medical image denoising. Image denoising based on deep learning methods has attracted considerable attention owing to its excellent ability of automatic feature extraction. Most existing methods for medical image denoising adapted to certain types of noise have difficulties in handling spatially varying noise; meanwhile, image detail losses and structure changes occurred in the denoised image. Considering image context perception and structure preserving, this paper firstly introduces a medical image denoising method based on conditional generative adversarial network (CGAN) for various unknown noises. In the proposed architecture, noise image with the corresponding gradient image is merged as network conditional information, which enhances the contrast between the original signal and noise according to the structural specificity. A novel generator with residual dense blocks makes full use of the relationship among convolutional layers to explore image context. Furthermore, the reconstruction loss and WGAN loss are combined as the objective loss function to ensure the consistency of denoised image and real image. A series of experiments for medical image denoising are conducted with the denoising results of PSNR = 33.2642 and SSIM = 0.9206 on JSRT datasets and PSNR = 35.1086 and SSIM = 0.9328 on LIDC datasets. Compared with the state-of-the-art methods, the superior performance of the proposed method is outstanding.


2021 ◽  
Vol 9 ◽  
Author(s):  
Weidan Zhang ◽  
Fabao Yan ◽  
Fuyun Han ◽  
Ruopu He ◽  
Enze Li ◽  
...  

Solar radio bursts can be used to study the properties of solar activities and the underlying coronal conditions on the basis of the present understanding of their emission mechanisms. With the construction of observational instruments, around the world, a vast volume of solar radio observational data has been obtained. Manual classifications of these data require significant efforts and human labor in addition to necessary expertise in the field. Misclassifications are unavoidable due to subjective judgments of various types of radio bursts and strong radio interference in some events. It is therefore timely and demanding to develop techniques of auto-classification or recognition of solar radio bursts. The latest advances in deep learning technology provide an opportunity along this line of research. In this study, we develop a deep convolutional generative adversarial network model with conditional information (C-DCGAN) to auto-classify various types of solar radio bursts, using the solar radio spectral data from the Culgoora Observatory (1995, 2015) and the Learmonth Observatory (2001, 2019), in the metric decametric wavelengths. The technique generates pseudo images based on available data inputs, by modifying the layers of the generator and discriminator of the deep convolutional generative adversarial network. It is demonstrated that the C-DCGAN method can reach a high-level accuracy of auto-recognition of various types of solar radio bursts. And the issue caused by inadequate numbers of data samples and the consequent over-fitting issue has been partly resolved.


Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1596
Author(s):  
Xiang Li ◽  
Junan Yang ◽  
Hui Liu ◽  
Pengjiang Hu

Named entity recognition (NER) aims to extract entities from unstructured text, and a nested structure often exists between entities. However, most previous studies paid more attention to flair named entity recognition while ignoring nested entities. The importance of words in the text should vary for different entity categories. In this paper, we propose a head-to-tail linker for nested NER. The proposed model exploits the extracted entity head as conditional information to locate the corresponding entity tails under different entity categories. This strategy takes part of the symmetric boundary information of the entity as a condition and effectively leverages the information from the text to improve the entity boundary recognition effectiveness. The proposed model considers the variability in the semantic correlation between tokens for different entity heads under different entity categories. To verify the effectiveness of the model, numerous experiments were implemented on three datasets: ACE2004, ACE2005, and GENIA, with F1-scores of 80.5%, 79.3%, and 76.4%, respectively. The experimental results show that our model is the most effective of all the methods used for comparison.


Entropy ◽  
2021 ◽  
Vol 23 (8) ◽  
pp. 1021
Author(s):  
James Fullwood ◽  
Arthur J. Parzygnat

We provide a stochastic extension of the Baez–Fritz–Leinster characterization of the Shannon information loss associated with a measure-preserving function. This recovers the conditional entropy and a closely related information-theoretic measure that we call conditional information loss. Although not functorial, these information measures are semi-functorial, a concept we introduce that is definable in any Markov category. We also introduce the notion of an entropic Bayes’ rule for information measures, and we provide a characterization of conditional entropy in terms of this rule.


Sign in / Sign up

Export Citation Format

Share Document