scholarly journals BBKNN: fast batch alignment of single cell transcriptomes

Author(s):  
Krzysztof Polański ◽  
Matthew D Young ◽  
Zhichao Miao ◽  
Kerstin B Meyer ◽  
Sarah A Teichmann ◽  
...  

Abstract Motivation Increasing numbers of large scale single cell RNA-Seq projects are leading to a data explosion, which can only be fully exploited through data integration. A number of methods have been developed to combine diverse datasets by removing technical batch effects, but most are computationally intensive. To overcome the challenge of enormous datasets, we have developed BBKNN, an extremely fast graph-based data integration algorithm. We illustrate the power of BBKNN on large scale mouse atlasing data, and favourably benchmark its run time against a number of competing methods. Availability and implementation BBKNN is available at https://github.com/Teichlab/bbknn, along with documentation and multiple example notebooks, and can be installed from pip. Supplementary information Supplementary data are available at Bioinformatics online.

2018 ◽  
Author(s):  
Jong-Eun Park ◽  
Krzysztof Polański ◽  
Kerstin Meyer ◽  
Sarah A. Teichmann

AbstractIncreasing numbers of large scale single cell RNA-Seq projects are leading to a data explosion, which can only be fully exploited through data integration. Therefore, efficient computational tools for combining diverse datasets are crucial for biology in the single cell genomics era. A number of methods have been developed to assist data integration by removing technical batch effects, but most are computationally intensive. To overcome the challenge of enormous datasets, we have developed BBKNN, an extremely fast graph-based data integration method. We illustrate the power of BBKNN for dimensionalityreduced visualisation and clustering in multiple biological scenarios, including a massive integrative study over several murine atlases. BBKNN successfully connects cell populations across experimentally heterogeneous mouse scRNA-Seq datasets, which reveals global markers of cell type and organspecificity and provides the foundation for inferring the underlying transcription factor network. BBKNN is available at https://github.com/Teichlab/bbknn.


2017 ◽  
Author(s):  
Zhun Miao ◽  
Ke Deng ◽  
Xiaowo Wang ◽  
Xuegong Zhang

AbstractSummaryThe excessive amount of zeros in single-cell RNA-seq data include “real” zeros due to the on-off nature of gene transcription in single cells and “dropout” zeros due to technical reasons. Existing differential expression (DE) analysis methods cannot distinguish these two types of zeros. We developed an R package DEsingle which employed Zero-Inflated Negative Binomial model to estimate the proportion of real and dropout zeros and to define and detect 3 types of DE genes in single-cell RNA-seq data with higher accuracy.Availability and ImplementationThe R package DEsingle is freely available at https://github.com/miaozhun/DEsingle and is under Bioconductor’s consideration [email protected] informationSupplementary data are available at bioRxiv online.


Author(s):  
Davide Risso ◽  
Stefano Maria Pagnotta

Abstract Motivation Data transformations are an important step in the analysis of RNA-seq data. Nonetheless, the impact of transformation on the outcome of unsupervised clustering procedures is still unclear. Results Here, we present an Asymmetric Winsorization per Sample Transformation (AWST), which is robust to data perturbations and removes the need for selecting the most informative genes prior to sample clustering. Our procedure leads to robust and biologically meaningful clusters both in bulk and in single-cell applications. Availability The AWST method is available at https://github.com/drisso/awst. The code to reproduce the analyses is available at https://github.com/drisso/awst\_analysis. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 36 (18) ◽  
pp. 4810-4812
Author(s):  
Qingxi Meng ◽  
Idoia Ochoa ◽  
Mikel Hernaez

Abstract Motivation Sequencing data are often summarized at different annotation levels for further analysis, generally using the general feature format (GFF) or its descendants, gene transfer format (GTF) and GFF3. Existing utilities for accessing these files, like gffutils and gffread, do not focus on reducing the storage space, significantly increasing it in some cases. We propose GPress, a framework for querying GFF files in a compressed form. GPress can also incorporate and compress expression files from both bulk and single-cell RNA-Seq experiments, supporting simultaneous queries on both the GFF and expression files. In brief, GPress applies transformations to the data which are then compressed with the general lossless compressor BSC. To support queries, GPress compresses the data in blocks and creates several index tables for fast retrieval. Results We tested GPress on several GFF files of different organisms, and showed that it achieves on average a 61% reduction in size with respect to gzip (the current de facto compressor for GFF files) while being able to retrieve all annotations for a given identifier or a range of coordinates in a few seconds (when run in a common laptop). In contrast, gffutils provides faster retrieval but doubles the size of the GFF files. When additionally linking an expression file, we show that GPress can reduce its size by more than 68% when compared to gzip (for both bulk and single-cell RNA-Seq experiments), while still retrieving the information within seconds. Finally, applying BSC to the data streams generated by GPress instead of to the original file shows a size reduction of more than 44% on average. Availability and implementation GPress is freely available at https://github.com/qm2/gpress. Supplementary information Supplementary data are available at Bioinformatics online.


2017 ◽  
Author(s):  
Bo Wang ◽  
Daniele Ramazzotti ◽  
Luca De Sano ◽  
Junjie Zhu ◽  
Emma Pierson ◽  
...  

AbstractMotivationWe here present SIMLR (Single-cell Interpretation via Multi-kernel LeaRning), an open-source tool that implements a novel framework to learn a cell-to-cell similarity measure from single-cell RNA-seq data. SIMLR can be effectively used to perform tasks such as dimension reduction, clustering, and visualization of heterogeneous populations of cells. SIMLR was benchmarked against state-of-the-art methods for these three tasks on several public datasets, showing it to be scalable and capable of greatly improving clustering performance, as well as providing valuable insights by making the data more interpretable via better a visualization.Availability and ImplementationSIMLR is available on GitHub in both R and MATLAB implementations. Furthermore, it is also available as an R package on [email protected] or [email protected] InformationSupplementary data are available at Bioinformatics online.


2022 ◽  
Author(s):  
Chenfei Wang ◽  
Pengfei Ren ◽  
Xiaoying Shi ◽  
Xin Dong ◽  
Zhiguang Yu ◽  
...  

Abstract The rapid accumulation of single-cell RNA-seq data has provided rich resources to characterize various human cell types. Cell type annotation is the critical step in analyzing single-cell RNA-seq data. However, accurate cell type annotation based on public references is challenging due to the inconsistent annotations, batch effects, and poor characterization of rare cell types. Here, we introduce SELINA (single cELl identity NAvigator), an integrative annotation transferring framework for automatic cell type annotation. SELINA optimizes the annotation for minority cell types by synthetic minority over-sampling, removes batch effects among reference datasets using a multiple-adversarial domain adaptation network (MADA), and fits the query data with reference data using an autoencoder. Finally, SELINA affords a comprehensive and uniform reference atlas with 1.7 million cells covering 230 major human cell types. We demonstrated the robustness and superiority of SELINA in most human tissues compared to existing methods. SELINA provided a one-stop solution for human single- cell RNA-seq data annotation with the potential to extend for other species.


2019 ◽  
Vol 35 (21) ◽  
pp. 4472-4473 ◽  
Author(s):  
Páll Melsted ◽  
Vasilis Ntranos ◽  
Lior Pachter

Abstract Summary We introduce the Barcode-UMI-Set format (BUS) for representing pseudoalignments of reads from single-cell RNA-seq experiments. The format can be used with all single-cell RNA-seq technologies, and we show that BUS files can be efficiently generated. BUStools is a suite of tools for working with BUS files and facilitates rapid quantification and analysis of single-cell RNA-seq data. The BUS format therefore makes possible the development of modular, technology-specific and robust workflows for single-cell RNA-seq analysis. Availability and implementation http://BUStools.github.io/ and http://pachterlab.github.io/kallisto/singlecell.html. Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Vol 36 (8) ◽  
pp. 2474-2485 ◽  
Author(s):  
Zhanying Feng ◽  
Xianwen Ren ◽  
Yuan Fang ◽  
Yining Yin ◽  
Chutian Huang ◽  
...  

Abstract Motivation Single cell RNA-seq data offers us new resource and resolution to study cell type identity and its conversion. However, data analyses are challenging in dealing with noise, sparsity and poor annotation at single cell resolution. Detecting cell-type-indicative markers is promising to help denoising, clustering and cell type annotation. Results We developed a new method, scTIM, to reveal cell-type-indicative markers. scTIM is based on a multi-objective optimization framework to simultaneously maximize gene specificity by considering gene-cell relationship, maximize gene’s ability to reconstruct cell–cell relationship and minimize gene redundancy by considering gene–gene relationship. Furthermore, consensus optimization is introduced for robust solution. Experimental results on three diverse single cell RNA-seq datasets show scTIM’s advantages in identifying cell types (clustering), annotating cell types and reconstructing cell development trajectory. Applying scTIM to the large-scale mouse cell atlas data identifies critical markers for 15 tissues as ‘mouse cell marker atlas’, which allows us to investigate identities of different tissues and subtle cell types within a tissue. scTIM will serve as a useful method for single cell RNA-seq data mining. Availability and implementation scTIM is freely available at https://github.com/Frank-Orwell/scTIM. Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Vol 35 (22) ◽  
pp. 4757-4759 ◽  
Author(s):  
Vivek Bhardwaj ◽  
Steffen Heyne ◽  
Katarzyna Sikora ◽  
Leily Rabbani ◽  
Michael Rauer ◽  
...  

Abstract Summary Due to the rapidly increasing scale and diversity of epigenomic data, modular and scalable analysis workflows are of wide interest. Here we present snakePipes, a workflow package for processing and downstream analysis of data from common epigenomic assays: ChIP-seq, RNA-seq, Bisulfite-seq, ATAC-seq, Hi-C and single-cell RNA-seq. snakePipes enables users to assemble variants of each workflow and to easily install and upgrade the underlying tools, via its simple command-line wrappers and yaml files. Availability and implementation snakePipes can be installed via conda: `conda install -c mpi-ie -c bioconda -c conda-forge snakePipes’. Source code (https://github.com/maxplanck-ie/snakepipes) and documentation (https://snakepipes.readthedocs.io/en/latest/) are available online. Supplementary information Supplementary data are available at Bioinformatics online.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Zhiyuan Hu ◽  
Ahmed A. Ahmed ◽  
Christopher Yau

AbstractClustering of joint single-cell RNA-Seq (scRNA-Seq) data is often challenged by confounding factors, such as batch effects and biologically relevant variability. Existing batch effect removal methods typically require strong assumptions on the composition of cell populations being near identical across samples. Here, we present CIDER, a meta-clustering workflow based on inter-group similarity measures. We demonstrate that CIDER outperforms other scRNA-Seq clustering methods and integration approaches in both simulated and real datasets. Moreover, we show that CIDER can be used to assess the biological correctness of integration in real datasets, while it does not require the existence of prior cellular annotations.


Sign in / Sign up

Export Citation Format

Share Document