Effect of DNA Methylation Inhibitors on the Developmental Competence of Cloned Buffalo (Bubalus bubalis) Embryos.

2011 ◽  
Vol 85 (Suppl_1) ◽  
pp. 781-781 ◽  
Author(s):  
Ambikaprasanna Saha ◽  
Naresh Lalaji Selokar ◽  
Sudeepta Kumar Panda ◽  
Aman George ◽  
Musharifa Muzaffar ◽  
...  
2005 ◽  
Vol 4 (10) ◽  
pp. 1515-1520 ◽  
Author(s):  
Jody C. Chuang ◽  
Christine B. Yoo ◽  
Jennifer M. Kwan ◽  
Tony W.H. Li ◽  
Gangning Liang ◽  
...  

2016 ◽  
Vol 28 (2) ◽  
pp. 162
Author(s):  
M. Saini ◽  
N. L. Selokar ◽  
H. Agrawal ◽  
S. K. Singla ◽  
M. S. Chauhan ◽  
...  

Somatic cell nuclear transfer (SCNT) is a promising technology in buffalo for multiplication of elite animals, species conservation, and production of transgenic embryos for therapeutic applications. However, the cloning efficiency obtained in this species is very low, which might be due to improper reprogramming of donor cells after SCNT. Treatment of donor cells or fused embryos or both with epigenetic modifiers might be a suitable approach to improve the ability of donor cells to be reprogrammed. The present study was aimed at examining the effects of treatment of donor cells (24 h before SCNT) or fused embryos (10 h post-electrofusion) or both with 50 nM TSA + 7.5 nM 5-aza-dC on the developmental competence, quality, and epigenetic status of buffalo embryos produced by hand-made cloning (HMC) as described earlier (Saini et al. 2014 Reprod. Fertil. Dev. doi: 10.1071/RD14176). The percentage data were analysed using SYSTAT 12.0 (SPSS Inc., Chicago, IL, USA) after arcsine transformation. Differences between means were analysed by one-way ANOVA followed by Fisher’s least significant difference test. The blastocyst rate was significantly higher (P < 0.05) and the apoptotic index was significantly lower (P < 0.05) in embryos produced from donor cells or fused embryos or both treated with TSA + 5-aza-dC than that of controls (Table 1). However, the cleavage rate and the total cell number were not significantly different among all the groups. The global level of H3K18ac, examined by immunofluorescence staining, was higher (P < 0.05) and that of H3K27me3 was lower (P < 0.01) in blastocysts produced from donor cells or fused embryos or both treated with TSA + 5-aza-dC than that of controls. These results show that treatment of donor cells, fused embryos, or both with TSA + 5-aza-dC improves the developmental competence and quality, and alters the epigenetic status of buffalo embryos produced by HMC. However, the effects of treatment with these epigenetic modifiers on the pregnancy rate require further studies. Table 1.Effect of treatment of donor cells, fused embryos, or both with 50 nM TSA + 7.5 nM 5-aza-dC on the developmental competence and level of apoptosis in cloned embryos


2014 ◽  
Vol 20 (4) ◽  
pp. 1158-1166 ◽  
Author(s):  
Cheng-Cheng Zhu ◽  
Yan-Jun Hou ◽  
Jun Han ◽  
Hong-Lin Liu ◽  
Xiang-Shun Cui ◽  
...  

AbstractMycotoxins, such as aflatoxin (AF), fumonisin B1, zearalenone (ZEA), and deoxynivalenol (DON), are commonly found in many food commodities. Mycotoxins have been shown to increase DNA methylation levels in a human intestinal cell line. We previously showed that the developmental competence of oocytes was affected in mice that had been fed a mycotoxin-containing diet. In this study, we explored possible mechanisms of low mouse oocyte developmental competence after mycotoxin treatment in an epigenetic modification perspective. Mycotoxin-contaminated maize (DON at 3,875μg/kg, ZEA at 1,897μg/kg, and AF at 806μg/kg) was included in diets at three different doses (mass percentage: 0, 15, and 30%) and fed to mice for 4 weeks. The fluorescence intensity analysis showed that the general DNA methylation levels increased in oocytes from high dose mycotoxin-fed mice. Mouse oocyte histone methylation was also altered. H3K9me3 and H4K20me3 level increased in oocytes from mycotoxin-fed mice, whereas H3K27me3 and H4K20me2 level decreased in oocytes from mycotoxin-fed mice. Thus, our results indicate that naturally occurring mycotoxins have effects on epigenetic modifications in mouse oocytes, which may be one of the reasons for reduced oocyte developmental competence.


2011 ◽  
Vol 13 (3) ◽  
pp. 257-262 ◽  
Author(s):  
Sudeepta K. Panda ◽  
Aman George ◽  
Ambika P. Saha ◽  
Ruchi Sharma ◽  
Radhey S. Manik ◽  
...  

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3808-3808
Author(s):  
Ryan J Castoro ◽  
Noel J Raynal ◽  
Xuelin Huang ◽  
Carlos E. Bueso-Ramos ◽  
Guillermo Garcia-Manero ◽  
...  

Abstract Abstract 3808 Poster Board III-744 DNA methylation is a common epigenetic mechanism of gene silencing in patients with the Myelodysplastic Syndrome (MDS) and Acute Myelogenous Leukemia (AML). Epigenetic therapy with drugs which inhibit DNA methylation such as 5-azacytidine and 5-aza-2'-deoxycytidine (decitabine) have proven to be clinically potent in MDS and AML. In addition to DNA methylation inhibitors, histone deacetylase inhibitors (HDACi) have activity in leukemias, and at low doses show epigenetic synergy with DNA methylation inhibitors. To test this synergy in the clinic, we designed a phase II randomized study comparing decitabine alone (20 mg/m2 IV daily x 5 every 4 weeks) to decitabine (same dose) plus valproic acid (50 mg/kg PO daily for 7 days started at the same time as decitabine). We have previously reported interim results from this study, showing an overall response rate of 64% in MDS/CMML (CR in 39%) and 46% in AML (CR in 25%) with no significant differences in response or survival between the two arms. We now report on molecular analyses in this trial. We have studied DNA methylation of ALOX12, LINE1, MapK15, miR124a-1 and 3 and P15 using bisulfite-pyrosequencing, and expression of ATM, mi124a, p15 and p21 by qPCR at baseline and at days 5, 12 and 30 after initiation of therapy in 60 (32 for expression) patients treated on the study (33 received decitabine, 27 received decitabine + valproic acid, overall there were 31CRs or HI's and 28 NRs, 1 patient was inevaluable for response). Global methylation (measured by LINE1) decreased at day 5 by an average of 6.8 ±1.8% in the DAC arm and 3.5 ± 1.2% in the DAC/VPA arm (p=0.20). At day 12, the decrease (from baseline) was by 10.2 ± 2.2% in the DAC arm and 7.0 ± 1.5% in the DAC/VPA arm (p=0.32). At day 30 we observed a decrease of 6.4 ± 1.4% in the DAC arm and 4.8 ±2.2% in the DAC/VPA arm. We found no statistical differences between the two arms in any of the other genes studied for hypomethylation. By qPCR, expression of p15 at day 5 increased by 1.2±0.6 fold in the DAC arm and by 2.5±0.7 fold in the DAC/VPA arm (p=0.01). We found no differences in the other 3 genes studied between the two arms. We next asked about correlations between epigenetic modulation and response. There was no association between LINE1 methylation change at days 5, 12 or 30 and response. By contrast, sustained hypomethylation of miR124a1 correlated with response; at day 5, miR124a methylation had changed by -17.9 ± 3.7% in responders vs. -15.2 ± 5.8% in non-responders, while at day 30, methylation decreased further to -24±6.5%% in responders, but had already partially recovered to -5.3 ±5.8% of baseline in non-responders (p=0.029 for a comparison between responders and non-responders). Additionally we found that responders hypomethylated miR124a-3 faster by a change in methylation of -34.1 ± 6.3% at day 5 compared to non-responders who had -14.8 ± 6.3% at day 5 (p= 0.039). However there was no difference at day 30. By qPCR we studied the same genes as previously listed. We found that responders had a larger induction of p15 gene expression at day 5, 2.3 ± 0.75 fold compared to non-responders who had a 0.91 ± 0.66 fold increase (p=0.018). We also found a similar pattern in expression induction in the ATM gene, where responders at day 5 had a 1.92 ± 0.51 fold increase as compared to non-responders who had a 0.3 ± 0.64 fold increase (p=0.034). Similarly, for the mature miR124a locus, responders had a 2.91 ± 0.88 fold increase in expression at day 30 compared to non-responders who had 1.1 ± 0.24 fold change in gene expression (p=0.03). In conclusion, we found that adding Valproic acid to decitabine enhances activation of P15, but also shows trends for reducing hypomethylation induction, which is consistent with in-vitro studies. These opposing trends may explain why the response rate is not dramatically different in the two arms. We also found that sustained gene specific hypomethylation correlates with response, as does induction of expression of P15, miR124 and ATM, which confirms and extends our prior studies. Thus, modulation of DNA methylation and gene expression appears to be associated with response to decitabine, and testing whether histone deacetylase inhibitors enhance this response will require non-overlapping dosing regimens and, likely, more potent HDAC inhibitors. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2760-2760
Author(s):  
Jennifer J. Trowbridge ◽  
Mingjie Li ◽  
Charles W.M. Roberts ◽  
Stuart H. Orkin

Abstract Abstract 2760 The significance of mutations in components of the DNA methylation machinery in blood cancer has become a topic of intense investigation. Unlike genetic modifications, the reversible nature of DNA methylation and other epigenetic changes makes them attractive therapeutic targets. Very recently, mutations in the DNA methyltransferase DNMT3A and the DNA demethylase TET2 were identified in human peripheral T cell lymphoma (PTCL) [1]. These findings provided a novel link between the development and progression of PTCL with deregulation of DNA methylation processes. Importantly, this finding also extended the few known mutations associated with both T-cell lymphoma and myeloid leukemia. Our previous work identified acute sensitivity of MLL-AF9–induced myeloid leukemia (AML) to DNA demethylation through loss or haploinsufficiency of the DNA methyltransferase Dnmt1 [2]. Here, we investigated the sensitivity of PTCL to DNA demethylation. Lymphoma was induced in mice by inactivation of Snf5, a core subunit of the SWI/SNF chromatin remodeling complex, driven by CD4Cre (CD4Cre-Snf52lox). Inactivation of Snf5 leads to rapid onset of mature CD8+ PTCL with a median survival of 10 weeks of age. Strikingly, loss of Dnmt1 in this model (CD4Cre-Snf52lox-Dnmt12lox) completely abrogated development of lymphoma. Furthermore, haploinsufficiency of Dnmt1 was sufficient to increase event-free survival to 13 weeks of age (p=0.0008). Loss or haploinsufficiency of Dnmt1 did not impact normal T cell development in the thymus with the exception of a modest reduction in CD8+ CD44hi memory T cells. Based on the selective response of PTCL to reduced levels of Dnmt1 and DNA methylation, we screened a panel of pharmacological DNA demethylating agents for efficacy in PTCL. We found three putative DNA methylation inhibitors; the nucleoside inhibitor zebularine and non-nucleoside inhibitors RG108 and procainamide, which inhibited proliferation of primary murine PTCL in vitro. These inhibitors were effective at doses that did not restrict the proliferation of normal CD8+ T cells. When these inhibitors were evaluated for efficacy in vivo, both zebularine and procainamide were found to inhibit growth of primary murine PTCL. Together, these results suggest that therapy of PTCL with DNA methylation inhibitors or other DNA demethylating agents may achieve a favorable therapeutic index. Further, these results support the concept of a shared competitive advantage of myeloid leukemia and T-cell lymphoma in carrying mutations in the DNA methylation machinery. [1] Couronne L et al., NEJM, 2012, 366:95-6; [2] Trowbridge et al., Genes Dev, 2012, 26:344-9. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document