Effect of Mycotoxin-Containing Diets on Epigenetic Modifications of Mouse Oocytes by Fluorescence Microscopy Analysis

2014 ◽  
Vol 20 (4) ◽  
pp. 1158-1166 ◽  
Author(s):  
Cheng-Cheng Zhu ◽  
Yan-Jun Hou ◽  
Jun Han ◽  
Hong-Lin Liu ◽  
Xiang-Shun Cui ◽  
...  

AbstractMycotoxins, such as aflatoxin (AF), fumonisin B1, zearalenone (ZEA), and deoxynivalenol (DON), are commonly found in many food commodities. Mycotoxins have been shown to increase DNA methylation levels in a human intestinal cell line. We previously showed that the developmental competence of oocytes was affected in mice that had been fed a mycotoxin-containing diet. In this study, we explored possible mechanisms of low mouse oocyte developmental competence after mycotoxin treatment in an epigenetic modification perspective. Mycotoxin-contaminated maize (DON at 3,875μg/kg, ZEA at 1,897μg/kg, and AF at 806μg/kg) was included in diets at three different doses (mass percentage: 0, 15, and 30%) and fed to mice for 4 weeks. The fluorescence intensity analysis showed that the general DNA methylation levels increased in oocytes from high dose mycotoxin-fed mice. Mouse oocyte histone methylation was also altered. H3K9me3 and H4K20me3 level increased in oocytes from mycotoxin-fed mice, whereas H3K27me3 and H4K20me2 level decreased in oocytes from mycotoxin-fed mice. Thus, our results indicate that naturally occurring mycotoxins have effects on epigenetic modifications in mouse oocytes, which may be one of the reasons for reduced oocyte developmental competence.

2021 ◽  
Vol 22 (9) ◽  
pp. 4594
Author(s):  
Andrea Stoccoro ◽  
Fabio Coppedè

Epigenetic modifications of the nuclear genome, including DNA methylation, histone modifications and non-coding RNA post-transcriptional regulation, are increasingly being involved in the pathogenesis of several human diseases. Recent evidence suggests that also epigenetic modifications of the mitochondrial genome could contribute to the etiology of human diseases. In particular, altered methylation and hydroxymethylation levels of mitochondrial DNA (mtDNA) have been found in animal models and in human tissues from patients affected by cancer, obesity, diabetes and cardiovascular and neurodegenerative diseases. Moreover, environmental factors, as well as nuclear DNA genetic variants, have been found to impair mtDNA methylation patterns. Some authors failed to find DNA methylation marks in the mitochondrial genome, suggesting that it is unlikely that this epigenetic modification plays any role in the control of the mitochondrial function. On the other hand, several other studies successfully identified the presence of mtDNA methylation, particularly in the mitochondrial displacement loop (D-loop) region, relating it to changes in both mtDNA gene transcription and mitochondrial replication. Overall, investigations performed until now suggest that methylation and hydroxymethylation marks are present in the mtDNA genome, albeit at lower levels compared to those detectable in nuclear DNA, potentially contributing to the mitochondria impairment underlying several human diseases.


2019 ◽  
Vol 31 (6) ◽  
pp. 1068
Author(s):  
Federica Cavalera ◽  
Milena Simovic ◽  
Mario Zanoni ◽  
Valeria Merico ◽  
Silvia Garagna ◽  
...  

In the ovary, acquisition of oocyte developmental competence depends on a bidirectional exchange between the gamete and its companion cumulus cells (CCs). In this study we investigated the contribution of CCs surrounding oocytes of known developmental competence or incompetence to the acquisition of oocyte developmental competence. To this end, feeder layers of CCs (FL-CCs) were prepared using CCs isolated either from: (1) developmentally competent mouse oocytes whose nucleolus was surrounded by a chromatin ring (FL-SN-CCs); or (2) developmentally incompetent mouse oocytes whose nucleolus was not surrounded by a chromatin ring (FL-NSN-CCs). Denuded, fully grown oocytes (DOs) were matured to the MII stage on either FL-SN-CCs or FL-NSN-CCs, inseminated with spermatozoa and cultured throughout preimplantation development. FL-SN-CCs significantly improved the acquisition of oocyte developmental competence, with a blastocyst development rate equal to that for maturation of intact cumulus–oocyte–complexes. In contrast, DOs matured on FL-NSN-CCs or in the absence of CCs exhibited developmental failure, with embryos arresting at either the 4-cell or morula stage. These results set a culture platform to further improve the protocols for the maturation of DOs and to unravel the molecules involved in the cross-talk between the gamete and its companion CCs during the germinal vesicle to MII transition.


2017 ◽  
Vol 25 (4) ◽  
pp. 255-62
Author(s):  
Silvia W. Lestari ◽  
Meidika D. Rizki

Infertility is a complex disease which could be caused by male and female factors. The etiology from both factors needs further study. There are some approaches to understanding the etiology of infertility, one of them is epigenetic. Epigenetic modifications consist of DNA methylation, histone modifications, and chromatin remodelling. Male and female germinal cells undergo epigenetic modifications dynamically during differentiation into matured sperm and oocyte cells. In a male, the alteration of DNA methylation in spermatogenesis will cause oligo/asthenozoospermia. In addition, the histone methylation, acetylation, or other histone modification may lead sperm lose its ability to fertilize oocyte. Similarly, in a female, the alteration of DNA methylation and histone modification affects oogenesis, created aneuploidy in fertilized oocytes and resulted in embryonic death in the uterus. Alteration of these epigenetic modification patterns will cause infertility, both in male and female.


2010 ◽  
Vol 83 (6) ◽  
pp. 909-918 ◽  
Author(s):  
Kylie R. Dunning ◽  
Kara Cashman ◽  
Darryl L. Russell ◽  
Jeremy G. Thompson ◽  
Robert J. Norman ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Rosaria Anna Fontanella ◽  
Lucia Scisciola ◽  
Maria Rosaria Rizzo ◽  
Surina Surina ◽  
Celestino Sardu ◽  
...  

In obesity, several epigenetic modifications, including histones remodeling, DNA methylation, and microRNAs, could accumulate and determine increased expression of inflammatory molecules, the adipokines, that in turn might induce or accelerate the onset and development of cardiovascular and metabolic disorders. In order to better clarify the potential epigenetic mechanisms underlying the modulation of the inflammatory response by adipokines, the DNA methylation profile in peripheral leukocytes of the promoter region of IL-6 and NF-kB genes and plasma miRNA-21 levels were evaluated in 356 healthy subjects, using quantitative pyrosequencing-based analysis, and correlated with plasma adiponectin levels, body fat content and the primary pro-inflammatory markers. In addition, correlation analysis of DNA methylation profiles and miRNA-21 plasma levels with intima-media thickness (IMT), a surrogate marker for early atherosclerosis, left ventricular mass (LVM), left ventricular ejection fraction (LVEF), and cardiac performance index (MPI) was also performed to evaluate any potential clinical implication in terms of cardiovascular outcome. Results achieved confirmed the role of epigenetics in the obesity-related cardiovascular complications and firstly supported the potential role of plasma miRNA-21 and IL-6 and NF-kB DNA methylation changes in nucleated blood cells as potential biomarkers for predicting cardiovascular risk in obesity. Furthermore, our results, showing a role of adiponectin in preventing epigenetic modification induced by increased adipose tissue content in obese subjects, provide new evidence of an additional mechanism underlying the anti-inflammatory properties and the cardiovascular benefits of adiponectin. The exact mechanisms underlying the obesity-related epigenetic modifications found in the blood cells and whether similar epigenetic changes reflect adipose and myocardial tissue modifications need to be further investigated in future experiments.


Genes ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 602 ◽  
Author(s):  
Takanori Yoshida ◽  
Yoshiaki Tarutani ◽  
Tetsuji Kakutani ◽  
Akira Kawabe

Plants have a lot of diversity in epigenetic modifications such as DNA methylation in their natural populations or cultivars. Although many studies observing the epigenetic diversity within and among species have been reported, the mechanisms how these variations are generated are still not clear. In addition to the de novo spontaneous epi-mutation, the intra- and inter-specific crossing can also cause a change of epigenetic modifications in their progenies. Here we report an example of diversification of DNA methylation by crossing and succeeding selfing. We traced the inheritance pattern of epigenetic modification during the crossing experiment between two natural strains Columbia (Col), and Landsberg electa (Ler) in model plant Arabidopsis thaliana to observe the inheritance of DNA methylation in two organellar DNA-like sequence regions in the nuclear genome. Because organellar DNA integration to the nuclear genome is common in flowering plants and these sequences are occasionally methylated, such DNA could be the novel source of plant genome evolution. The amplicon sequencing, using bisulfite-converted DNA and a next-generation auto-sequencer, was able to efficiently track the heredity of DNA methylation in F1 and F2 populations. One region showed hypomethylation in the F1 population and succeeding elevation of DNA methylation with large variance in the F2 population. The methylation level of Col and Ler alleles in F2 heterozygotes showed a significant positive correlation, implying the trans-chromosomal effect on DNA methylation. The results may suggest the possible mechanism causing the natural epigenetic diversity within plant populations.


Cryobiology ◽  
2021 ◽  
Vol 103 ◽  
pp. 186
Author(s):  
Akshatha Daddangadi ◽  
Shubhashree Uppangala ◽  
Satish Kumar Adiga

Author(s):  
Ping-Shuang Lu ◽  
Lan-Ping Xie ◽  
Xiao-Han Kong ◽  
Yi Xu ◽  
Shao-Chen Sun

Podophyllotoxin (POD) is one of the most characterized lignans that is commonly found in podophyllum, and its preparations and derivatives are widely used in clinical treatment due to strong antitumor and antivirus activities. POD has been reported for its neurotoxicity, liver toxicity, and potential reproductive toxicity. In the present study, we investigated the effects of POD on the organelles of mouse oocytes during meiosis. Our results showed that exposure to POD significantly reduced the developmental competence of mouse oocytes. Further analysis revealed that the endoplasmic reticulum (ER) failed to accumulate to the spindle periphery, suggesting that POD exposure might affect protein synthesis during oocyte meiotic maturation. Similarly, abnormal Golgi apparatus distribution was found after POD exposure, which could be confirmed by the aberrant localization of Rab11a-related vesicles, indicating that POD induced vesicle-based protein transport disorder. We also found the aberrant accumulation of lysosomes in the cytoplasm of POD-exposed oocytes, which implied that POD might lead to aberrant protein degradation. Moreover, the perinuclear distribution of mitochondria was also significantly disturbed, indicating the mitochondrial dysfunction after POD exposure. In all, our study illustrated that exposure to POD might disrupt protein synthesis, transport, degradation, and ATP production by its effects on the distribution and functions of organelles during mouse oocyte meiotic maturation.


Sign in / Sign up

Export Citation Format

Share Document