scholarly journals Alzheimer's disease and anaesthesia: implications for the central cholinergic system

2006 ◽  
Vol 97 (4) ◽  
pp. 445-452 ◽  
Author(s):  
V. Fodale ◽  
D. Quattrone ◽  
C. Trecroci ◽  
V. Caminiti ◽  
L.B. Santamaria
2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Fanta Sabine Adeline Yadang ◽  
Yvette Nguezeye ◽  
Christelle Wayoue Kom ◽  
Patrick Herve Diboue Betote ◽  
Amina Mamat ◽  
...  

Alzheimer’s disease is first characterised by memory loss related to the central cholinergic system alteration. Available drugs provide symptomatic treatment with known side effects. The present study is aimed to evaluate the properties of Carissa edulis aqueous extract on a Scopolamine mouse model as an attempt to search for new compounds against Alzheimer’s disease-related memory impairment. Memory impairment was induced by administration of 1 mg/kg (i.p.) of Scopolamine for 7 days, and mice were treated with Carissa edulis aqueous extract. Behavioural studies were performed using T-maze and novel object recognition task for assessing learning and memory and open field test for locomotion. Brain acetylcholinesterase enzyme (AChE) activity was measured to evaluate the central cholinergic system. The level of MDA, glutathione, and catalase activity were measured to evaluate the oxidative stress level. Administration of Scopolamine shows a decrease in learning and memory enhancement during behavioural studies. A significant decrease in the time spent in the preferred arm of T-maze, in the time spent in the exploration of the novel object, and in the discrimination index of the familiar object was also observed. The significant impairment of the central cholinergic system was characterised in mice by an increase of AChE activity to 2.55±0.10 mol/min/g with an increase in oxidative stress. Treatment with the different doses of Carissa edulis (62.8, 157, 314, and 628 mg/kg orally administrated) significantly increased the memory of mice in T-maze and novel object recognition tests and also ameliorated locomotion of mice in the open field. Carissa edulis aqueous extract treatment also decreases the AChE activity and brain oxidative stress. It is concluded that administration of Carissa edulis aqueous extract enhances memory of mice by reducing AChE activity and demonstrating antioxidant properties. This could be developed into a novel therapy against memory impairment related to Alzheimer’s disease.


2021 ◽  
pp. 1-6
Author(s):  
Julia Schumacher ◽  
Alan J. Thomas ◽  
Luis R. Peraza ◽  
Michael Firbank ◽  
John T. O’Brien ◽  
...  

ABSTRACT Cholinergic deficits are a hallmark of Alzheimer’s disease (AD) and Lewy body dementia (LBD). The nucleus basalis of Meynert (NBM) provides the major source of cortical cholinergic input; studying its functional connectivity might, therefore, provide a tool for probing the cholinergic system and its degeneration in neurodegenerative diseases. Forty-six LBD patients, 29 AD patients, and 31 healthy age-matched controls underwent resting-state functional magnetic resonance imaging (fMRI). A seed-based analysis was applied with seeds in the left and right NBM to assess functional connectivity between the NBM and the rest of the brain. We found a shift from anticorrelation in controls to positive correlations in LBD between the right/left NBM and clusters in right/left occipital cortex. Our results indicate that there is an imbalance in functional connectivity between the NBM and primary visual areas in LBD, which provides new insights into alterations within a part of the corticopetal cholinergic system that go beyond structural changes.


2006 ◽  
Vol 14 (7S_Part_9) ◽  
pp. P516-P517
Author(s):  
Fadi S. Hanna Al-Shaikh ◽  
Neill R. Graff-Radford ◽  
Amanda M. Liesinger ◽  
Nilufer Ertekin-Taner ◽  
Tanis J. Ferman ◽  
...  

2006 ◽  
Vol 18 (s1) ◽  
pp. S3-S16 ◽  
Author(s):  
Agneta Nordberg

The pathological processes that lead to Alzheimer's disease (AD) begin decades before the onset of dementia. Brain abnormalities in genetically susceptible individuals have been observed even in young adults. Patients with AD differ from normal elderly patients in brain morphology and neurochemistry. Important observations include increasing appearance of amyloid plaques and neurofibrillary tangles, progressive loss of hippocampal volume, reduced cerebral glucose utilization, inflammatory processes, glial activation, and impairment of cholinergic function with losses of nicotinic acetylcholine receptors. These changes appear to begin in the asymptomatic stages and continue as cognition and then function and behavior are disrupted. Mild cognitive impairment (MCI) may be the first cognitive manifestation of this pathogenic process moderated by ongoing compensatory neurochemical mechanisms in the cholinergic system. Recent advances in positron emission tomography imaging techniques, including the development of the Pittsburgh B compound (PIB), allow in vivo visualization of amyloid plaques. These techniques have the potential to enable brain amyloid load to be monitored over time and to be related to brain function. Emerging evidence suggests that β-amyloid may interact with nicotinic receptors. This interaction may have clinically significant downstream effects and may mediate amyloid neurotoxicity. The cholinesterase inhibitors may have multiple actions, depending on the stage of the disease, from very mild to severe.


Sign in / Sign up

Export Citation Format

Share Document