brain morphology
Recently Published Documents


TOTAL DOCUMENTS

900
(FIVE YEARS 296)

H-INDEX

67
(FIVE YEARS 8)

Aging ◽  
2022 ◽  
Author(s):  
Michael Kolland ◽  
Edith Hofer ◽  
Lukas Pirpamer ◽  
Daniela Eibl ◽  
Christian Enzinger ◽  
...  

2022 ◽  
Vol 13 ◽  
Author(s):  
Yasue Uchida ◽  
Yukiko Nishita ◽  
Rei Otsuka ◽  
Saiko Sugiura ◽  
Michihiko Sone ◽  
...  

Brain reserve is a topic of great interest to researchers in aging medicine field. Some individuals retain well-preserved cognitive function until they fulfill their lives despite significant brain pathology. One concept that explains this paradox is the reserve hypothesis, including brain reserve that assumes a virtual ability to mitigate the effects of neuropathological changes and reduce the effects on clinical symptoms flexibly and efficiently by making complete use of the cognitive and compensatory processes. One of the surrogate measures of reserve capacity is brain volume. Evidence that dementia and hearing loss are interrelated has been steadily accumulating, and age-related hearing loss is one of the most promising modifiable risk factors of dementia. Research focused on the imaging analysis of the aged brain relative to auditory function has been gradually increasing. Several morphological studies have been conducted to understand the relationship between hearing loss and brain volume. In this mini review, we provide a brief overview of the concept of brain reserve, followed by a small review of studies addressing brain morphology and hearing loss/hearing compensation, including the findings obtained from our previous study that hearing loss after middle age could affect hippocampal and primary auditory cortex atrophy.


2022 ◽  
Author(s):  
Fernanda Hansen Pacheco de Moraes ◽  
Felipe Sudo ◽  
Marina Monteiro Carneiro ◽  
Bruno R. P. de Melo ◽  
Paulo Mattos ◽  
...  

This manuscript presents a study with recruited volunteers that comprehends three sorts of events present in Alzheimer's Disease (AD) evolution (structural, biochemical, and cognitive) to propose an update in neurodegeneration biomarkers for AD. The novel variables, K, I, and S, suggested based on physics properties and empirical evidence, are defined by power-law relations between cortical thickness, exposed and total area, and natural descriptors of brain morphology. Our central hypothesis is that variable K, almost constant in healthy human subjects, is a better discriminator of a diseased brain than the current morphological biomarker, Cortical Thickness, due to its aggregated information. We extracted morphological features from 3T MRI T1w images of 123 elderly subjects: 77 Healthy Cognitive Unimpaired Controls (CTL), 33 Mild Cognitive Impairment (MCI) patients, and 13 Alzheimer's Disease (AD) patients. Moreover, Cerebrospinal Fluid (CSF) biomarkers and clinical data scores were correlated with K, intending to characterize health and disease in the cortex with morphological criteria and cognitive-behavioral profiles. K distinguishes Alzheimer's Disease, Mild Cognitive Impairment, and Healthy Cognitive Unimpaired Controls globally and locally with reasonable accuracy (CTL-AD, 0.82; CTL-MCI, 0.58). Correlations were found between global and local K associated with clinical behavioral data (executive function and memory assessments) and CSF biomarkers (t-Tau, Aβ-40, and Aβ-42). The results suggest that the cortical folding component, K, is a premature discriminator of healthy aging, Mild Cognitive Impairment, and Alzheimer's Disease, with significant differences within diagnostics. Despite the non-concomitant events, we found correlations between brain structural degeneration (K), cognitive tasks, and biochemical markers.


Author(s):  
Jurate Aleknaviciute ◽  
Tavia E. Evans ◽  
Elif Aribas ◽  
Merel W. de Vries ◽  
Eric A. P. Steegers ◽  
...  

AbstractThe peripartum period is the highest risk interval for the onset or exacerbation of psychiatric illness in women’s lives. Notably, pregnancy and childbirth have been associated with short-term structural and functional changes in the maternal human brain. Yet the long-term effects of pregnancy on maternal brain structure remain unknown. We investigated a large population-based cohort to examine the association between parity and brain structure. In total, 2,835 women (mean age 65.2 years; all free from dementia, stroke, and cortical brain infarcts) from the Rotterdam Study underwent magnetic resonance imaging (1.5 T) between 2005 and 2015. Associations of parity with global and lobar brain tissue volumes, white matter microstructure, and markers of vascular brain disease were examined using regression models. We found that parity was associated with a larger global gray matter volume (β = 0.14, 95% CI = 0.09–0.19), a finding that persisted following adjustment for sociodemographic factors. A non-significant dose-dependent relationship was observed between a higher number of childbirths and larger gray matter volume. The gray matter volume association with parity was globally proportional across lobes. No associations were found regarding white matter volume or integrity, nor with markers of cerebral small vessel disease. The current findings suggest that pregnancy and childbirth are associated with robust long-term changes in brain structure involving a larger global gray matter volume that persists for decades. Future studies are warranted to further investigate the mechanism and physiological relevance of these differences in brain morphology.


2022 ◽  
Author(s):  
Gemma Sullivan ◽  
Kadi Vaher ◽  
Manuel Blesa ◽  
Paola Galdi ◽  
David Q Stoye ◽  
...  

Breast milk exposure is associated with improved neurocognitive outcomes following preterm birth but the neural substrates linking nutrition with outcome are uncertain. By combining nutritional data with brain MRI, we tested the hypothesis that high versus low breast milk exposure in preterm infants during neonatal care results in a cortical morphology that more closely resembles that of infants born at term. We studied 135 preterm (mean gestational age 30+2 weeks, range 22+1 to 32+6) and 77 term-born infants (mean gestational age 39+4 weeks, range 36+3 to 42+1). Nutritional data was collected from birth until hospital discharge to identify the proportion of days preterm infants received exclusive breast milk. Structural and diffusion MRI were performed at term-equivalent age. Cortical indices (volume, thickness, surface area, gyrification index, sulcal depth, curvature) and water diffusion parameters (fractional anisotropy, mean diffusivity, radial diffusivity, axial diffusivity, neurite density index, orientation dispersion index) were compared between preterm infants who received exclusive breast milk for <75% of inpatient days (n=68), preterm infants who received exclusive breast milk for ≥75% of inpatient days (n=67) and term-born controls (n=77). High breast milk exposure was associated with reduced cortical gray matter volume (d=0.47, p=0.014), thickness (d=0.42, p=0.039) and radial diffusivity (d=0.38, p=0.039), and increased fractional anisotropy (d=0.38, p=0.037) after adjustment for age at MRI. High versus low breast milk exposure in the weeks following preterm birth is associated with a cortical imaging phenotype that more closely resembles the brain morphology of healthy infants born at term.


2022 ◽  
Vol 12 ◽  
Author(s):  
Maria Chiara Piani ◽  
Eleonora Maggioni ◽  
Giuseppe Delvecchio ◽  
Adele Ferro ◽  
Davide Gritti ◽  
...  

Major Depressive Disorder (MDD) is a disabling illness affecting more than 5% of the elderly population. Higher female prevalence and sex-specific symptomatology have been observed, suggesting that biologically-determined dimensions might affect the disease onset and outcome. Rumination and executive dysfunction characterize adult-onset MDD, but sex differences in these domains and in the related brain mechanisms are still largely unexplored. The present pilot study aimed to explore any interactions between adult-onset MDD and sex on brain morphology and brain function during a Go/No-Go paradigm. We hypothesized to detect diagnosis by sex effects on brain regions involved in self-referential processes and cognitive control. Twenty-four subjects, 12 healthy (HC) (mean age 68.7 y, 7 females and 5 males) and 12 affected by adult-onset MDD (mean age 66.5 y, 5 females and 7 males), underwent clinical evaluations and a 3T magnetic resonance imaging (MRI) session. Diagnosis and diagnosis by sex effects were assessed on regional gray matter (GM) volumes and task-related functional MRI (fMRI) activations. The GM volume analyses showed diagnosis effects in left mid frontal cortex (p &lt; 0.01), and diagnosis by sex effects in orbitofrontal, olfactory, and calcarine regions (p &lt; 0.05). The Go/No-Go fMRI analyses showed MDD effects on fMRI activations in left precuneus and right lingual gyrus, and diagnosis by sex effects on fMRI activations in right parahippocampal gyrus and right calcarine cortex (p &lt; 0.001, ≥ 40 voxels). Our exploratory results suggest the presence of sex-specific brain correlates of adult-onset MDD–especially in regions involved in attention processing and in the brain default mode–potentially supporting cognitive and symptom differences between sexes.


2022 ◽  
Author(s):  
Eero Silver ◽  
Elmo P. Pulli ◽  
Eeva-Leena Kataja ◽  
Venla Kumpulainen ◽  
Anni Copeland ◽  
...  

Abstract The human brain develops dynamically during early childhood, when the child is sensitive to both genetic programming and extrinsic exposures. Recent studies have found links between prenatal and early life environmental factors, family demographics and the cortical brain morphology in newborns measured by surface area, volume and thickness. Here in this magnetic resonance imaging study, we evaluated whether a similar set of variables associates with cortical surface area and volumes measured in a sample of 170 healthy 5-year-olds from the FinnBrain Birth Cohort Study. We found that child sex, maternal pre-pregnancy body mass index, 5min APGAR score, neonatal intensive care admission and maternal smoking during pregnancy associated with surface areas. Furthermore, child sex, maternal age and maternal level of education associated with brain volumes. Expectedly, many variables deemed important for neonatal brain anatomy (such as birth weight and gestational age at birth) in earlier studies did not associate with brain metrics in our study group of 5-year-olds, which implies that their effects on brain anatomy are age-specific. Future research may benefit from including pre- and perinatal covariates in the analyses when such data are available. Finally, we provide evidence for right lateralization for surface area and volumes except for the temporal lobes. These subtle differences between hemispheres are variable across individuals and may be interesting brain metrics in future studies.


2022 ◽  
Vol 82 ◽  
Author(s):  
N. Ullah ◽  
I. Ullah ◽  
M. Israr ◽  
A. Rasool ◽  
F. Akbar ◽  
...  

Abstract The present study was aimed at comparing the brain size of mahseer (Tor putitora) in relation to their body weight and standard length, to investigate the potential impact of rearing environment on brain development in fish. The weight of the brain and three of its subdivisions cerebellum (CB), optic tectum (OT), and telencephalon (TC) were measured for both wild and hatchery-reared fish. The data was analysed using multiple analysis of covariance (MANCOVA), analysis of covariance (ANCOVA), and discriminate function analysis (DFA). We found the fish reared under hatchery conditions exhibit smaller brain size related to body weight, when compared to the wild ones. A significant (p<0.5) difference was observed in the length of CB and OT concerning the standard body length while no significant difference was found in TC of the fish from both the origins. The results of the current study highlight a logical assumption that neural deficiency affects the behaviour of fish, that’s why the captive-reared fish show maladaptive response and face fitness decline when released to the natural environment for wild stock enhancement. The current study concluded that hatchery-reared fish exhibit variations in gross brain morphology as compared to their wild counterpart.


Author(s):  
Lynn V. Fehlbaum ◽  
Lien Peters ◽  
Plamina Dimanova ◽  
Margot Röell ◽  
Réka Borbás ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document