scholarly journals Rare GABRA3 variants are associated with epileptic seizures, encephalopathy and dysmorphic features

Brain ◽  
2017 ◽  
Vol 140 (11) ◽  
pp. 2879-2894 ◽  
Author(s):  
Cristina Elena Niturad ◽  
Dorit Lev ◽  
Vera M Kalscheuer ◽  
Agnieszka Charzewska ◽  
Julian Schubert ◽  
...  

Abstract Genetic epilepsies are caused by mutations in a range of different genes, many of them encoding ion channels, receptors or transporters. While the number of detected variants and genes increased dramatically in the recent years, pleiotropic effects have also been recognized, revealing that clinical syndromes with various degrees of severity arise from a single gene, a single mutation, or from different mutations showing similar functional defects. Accordingly, several genes coding for GABAA receptor subunits have been linked to a spectrum of benign to severe epileptic disorders and it was shown that a loss of function presents the major correlated pathomechanism. Here, we identified six variants in GABRA3 encoding the α3-subunit of the GABAA receptor. This gene is located on chromosome Xq28 and has not been previously associated with human disease. Five missense variants and one microduplication were detected in four families and two sporadic cases presenting with a range of epileptic seizure types, a varying degree of intellectual disability and developmental delay, sometimes with dysmorphic features or nystagmus. The variants co-segregated mostly but not completely with the phenotype in the families, indicating in some cases incomplete penetrance, involvement of other genes, or presence of phenocopies. Overall, males were more severely affected and there were three asymptomatic female mutation carriers compared to only one male without a clinical phenotype. X-chromosome inactivation studies could not explain the phenotypic variability in females. Three detected missense variants are localized in the extracellular GABA-binding NH2-terminus, one in the M2-M3 linker and one in the M4 transmembrane segment of the α3-subunit. Functional studies in Xenopus laevis oocytes revealed a variable but significant reduction of GABA-evoked anion currents for all mutants compared to wild-type receptors. The degree of current reduction correlated partially with the phenotype. The microduplication disrupted GABRA3 expression in fibroblasts of the affected patient. In summary, our results reveal that rare loss-of-function variants in GABRA3 increase the risk for a varying combination of epilepsy, intellectual disability/developmental delay and dysmorphic features, presenting in some pedigrees with an X-linked inheritance pattern. 10.1093/brain/awx236_video1 awx236media1 5636589232001

Author(s):  
Uirá Souto Melo ◽  
Devon Bonner ◽  
Kevin C. Kent Lloyd ◽  
Ala Moshiri ◽  
Brandon Willis ◽  
...  

2018 ◽  
Author(s):  
Gabrielle Wheway ◽  
Liliya Nazlamova ◽  
Nervine Meshad ◽  
Samantha Hunt ◽  
Nicola Jackson ◽  
...  

AbstractAt least six different proteins of the spliceosome, including PRPF3, PRPF4, PRPF6, PRPF8, PRPF31 and SNRNP200, are mutated in autosomal dominant retinitis pigmentosa (adRP). These proteins have recently been shown to localise to the base of the connecting cilium of the retinal photoreceptor cells, elucidating this form of RP as a retinal ciliopathy. In the case of loss-of-function variants in these genes, pathogenicity can easily be ascribed. In the case of missense variants, this is more challenging. Furthermore, the exact molecular mechanism of disease in this form of RP remains poorly understood.In this paper we take advantage of the recently published cryo EM-resolved structure of the entire human spliceosome, to predict the effect of a novel missense variant in one component of the spliceosome; PRPF31, found in a patient attending the genetics eye clinic at Bristol Eye Hospital. Monoallelic variants in PRPF31 are a common cause of autosomal dominant retinitis pigmentosa (adRP) with incomplete penetrance. We use in vitro studies to confirm pathogenicity of this novel variant PRPF31 c.341T>A, p.Ile114Asn.This work demonstrates how in silico modelling of structural effects of missense variants on cryo-EM resolved protein complexes can contribute to predicting pathogenicity of novel variants, in combination with in vitro and clinical studies. It is currently a considerable challenge to assign pathogenic status to missense variants in these proteins.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Layal Abi Farraj ◽  
Wassim Daoud Khatoun ◽  
Naji Abou Chebel ◽  
Victor Wakim ◽  
Katia Dawali ◽  
...  

Abstract Background Hyperphosphatasia with mental retardation syndrome (HPMRS) is a recessive disorder characterized by high blood levels of alkaline phosphatase together with typical dysmorphic signs such as cleft palate, intellectual disability, cardiac abnormalities, and developmental delay. Genes involved in the glycosylphosphatidylinositol pathway and known to be mutated in HPMRS have never been characterized in the Lebanese population. Case presentation Herein, we describe a pair of monozygotic twins presenting with severe intellectual disability, distinct facial dysmorphism, developmental delay, and increased alkaline phosphatase level. Two individuals underwent whole exome sequencing followed by Sanger sequencing to confirm the co-segregation of the mutation in the consanguineous family. A biallelic loss of function mutation in PGAP3 was detected. Both patients were homozygous for the c.203delC (p.C68LfsX88) mutation and the parents were carriers confirming the founder effect of the mutation. High ALP serum levels confirmed the molecular diagnosis. Conclusion Our findings have illustrated the genomic profile of PGAP3-related HPMRS which is essential for targeted molecular and genetic testing. Moreover, we found previously unreported clinical findings such as hypodontia and skin hyperpigmentation. These features, together with the novel mutation expand the phenotypic and genotypic spectrum of this rare recessive disorder.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Zahra Alsahlawi ◽  
Mohamed Jailani ◽  
Husain Alaradi ◽  
Abdulaziz AlAbbad

DeSanto-Shinawi syndrome is a rare genetic condition caused by loss-of-function mutation in WAC. It is characterized by dysmorphic features, intellectual disability, and behavioral abnormalities. In this case report, we describe the clinical features and genotype of a patient with a novel mutation 1346C > A in WAC. This patient’s dysmorphic features include a prominent forehead, bulbous nasal tip, macroglossia, deep-set eyes, and malar hypoplasia. This patient also showed signs of intellectual disability and behavioral abnormalities such as night terrors. These findings are consistent with those described in earlier reports. Here, we report new findings of epilepsy and recurrent skin infections which had not been reported in prior studies.


Author(s):  
Marjolein J. A. Weerts ◽  
Kristina Lanko ◽  
Francisco J. Guzmán-Vega ◽  
Adam Jackson ◽  
Reshmi Ramakrishnan ◽  
...  

Abstract Purpose Pathogenic variants in SETD1B have been associated with a syndromic neurodevelopmental disorder including intellectual disability, language delay, and seizures. To date, clinical features have been described for 11 patients with (likely) pathogenic SETD1B sequence variants. This study aims to further delineate the spectrum of the SETD1B-related syndrome based on characterizing an expanded patient cohort. Methods We perform an in-depth clinical characterization of a cohort of 36 unpublished individuals with SETD1B sequence variants, describing their molecular and phenotypic spectrum. Selected variants were functionally tested using in vitro and genome-wide methylation assays. Results Our data present evidence for a loss-of-function mechanism of SETD1B variants, resulting in a core clinical phenotype of global developmental delay, language delay including regression, intellectual disability, autism and other behavioral issues, and variable epilepsy phenotypes. Developmental delay appeared to precede seizure onset, suggesting SETD1B dysfunction impacts physiological neurodevelopment even in the absence of epileptic activity. Males are significantly overrepresented and more severely affected, and we speculate that sex-linked traits could affect susceptibility to penetrance and the clinical spectrum of SETD1B variants. Conclusion Insights from this extensive cohort will facilitate the counseling regarding the molecular and phenotypic landscape of newly diagnosed patients with the SETD1B-related syndrome.


2019 ◽  
Author(s):  
Matthew R. Taylor ◽  
E. Anne Martin ◽  
Brooke Sinnen ◽  
Rajdeep Trilokekar ◽  
Emmanuelle Ranza ◽  
...  

ABSTRACTMissense variants in Kirrel3 are repeatedly identified as risk factors for autism spectrum disorder and intellectual disability but it has not been reported if or how these variants disrupt Kirrel3 function. Previously, we studied Kirrel3 loss-of-function using knockout mice and showed that Kirrel3 is a synaptic adhesion molecule necessary to form one specific type of hippocampal synapse in vivo. Here, we developed a new gain-of-function assay for Kirrel3 and find that wild-type Kirrel3 induces synapse formation selectively between Kirrel3-expressing cells via homophilic, trans-cellular binding. We tested six disease-associated Kirrel3 missense variants and find that five attenuate this synaptogenic function. All variants tested traffic to the cell surface and localize to synapses similar to wild-type Kirrel3. Two tested variants lack homophilic trans-cellular binding, which likely accounts for their reduced synaptogenic function. Interestingly, we also identified variants that bind in trans but cannot induce synapses, indicating Kirrel3 trans-cellular binding is necessary but not sufficient for its synaptogenic function. Collectively, these results suggest Kirrel3 functions as a synaptogenic, cell-recognition molecule, and this function is attenuated by missense variants associated with autism spectrum disorder and intellectual disability. Thus, we provide critical insight to Kirrel3 function in typical brain development and the consequences of missense variants associated with autism spectrum disorder and intellectual disability.SIGNIFICANCE STATEMENTHere, we advance our understanding of mechanisms mediating target-specific synapse formation by providing evidence that Kirrel3 trans-cellular interactions mediate contact recognition and signaling to promote synapse development. Moreover, this is the first study to test the effects of disease-associated Kirrel3 missense variants on synapse formation, and thereby, provides a framework to understand the etiology of complex neurodevelopmental disorders arising from rare missense variants in synaptic genes.


2021 ◽  
Vol 49 (11) ◽  
pp. 030006052110583
Author(s):  
Tong Qiu ◽  
Qian Dai ◽  
Qiu Wang

ARHGEF9 encodes collybistin, a brain-specific guanosine diphosphate-guanosine-5′-triphosphate exchange factor that plays an important role in clustering of gephyrin and γ-aminobutyric acid type A receptors in the postsynaptic membrane. Overwhelming evidence suggests that defects in this protein can cause X-linked intellectual disability, which comprises a series of clinical phenotypes, including autism spectrum disorder, behavior disorder, intellectual disability, and febrile seizures. Here, we report a boy with clinical symptoms of severe intellectual disability, epilepsy, and developmental delay and regression. Trio exome sequencing ( trio-clinical exome sequencing) identified a novel hemizygous deletion, c.656_c.669delACTTCTTTGAGGCC (p. His219Leu fs*9), in exon 5 of ARHGEF9. This variant was not reported in either the Genome Aggregation Database or our database of 309 patients with neurodevelopmental disorders. Oxcarbazepine and levetiracetam reduced the frequency of the patient’s epileptic seizures to a certain extent, but psychomotor developmental delay and developmental regression became more obvious with age. This case study seeks to report a de novo loss-of-function mutation of ARHGEF9, aiming to emphasize the genetic diagnosis of X-linked intellectual disability and further improve knowledge of the ethnic distribution of ARHGEF9 mutations.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Kazuki Yamazawa ◽  
Kenji Shimizu ◽  
Hirofumi Ohashi ◽  
Hidenori Haruna ◽  
Satomi Inoue ◽  
...  

Abstract2p15p16.1 microdeletion syndrome is a recently recognized congenital disorder characterized by developmental delay and dysmorphic features. RP2-associated retinal disorder (RP2-RD) is an X-linked inherited retinal disease with a childhood onset caused by a loss-of-function variant in the RP2 gene. Here, we describe a 14-year-old boy with double diagnoses of 2p15p16.1 microdeletion syndrome and RP2-RD. The recurrence risk of each condition and the indication for potential therapeutic options for RP2-RD are discussed.


Sign in / Sign up

Export Citation Format

Share Document