α3 subunit
Recently Published Documents


TOTAL DOCUMENTS

99
(FIVE YEARS 16)

H-INDEX

23
(FIVE YEARS 1)

2021 ◽  
Vol 12 ◽  
Author(s):  
Raffaella Pisapia ◽  
Nicolina Capoluongo ◽  
Giulia Palmiero ◽  
Carlo Tascini ◽  
Carolina Rescigno

Mutations in the ATP1A3 gene encoding the α3 subunit of Na+/K+-ATPase are associated with different neurological manifestations that may be elicited by febrile episodes. A recently described phenotype, linked to the p.Arg756Cys mutation, is clinically characterized by Relapsing Encephalopathy with Cerebellar Ataxia (RECA). In our case, a diagnosis of RECA has been established, and despite an alternative, reasonable cause had been already identified.We describe the case of a child with two recurrent episodes, 2 years apart, of hypotonia and ataxia. In both episodes, a laboratory-confirmed influenza virus infection suggested the diagnosis of influenza-associated encephalopathy. After the second episode, a search for genetic mutations was performed, and ATP1A3 mutation associated to RECA was found. After both episodes, the child was discharged after partial improvement of neurological conditions.The diagnosis of encephalopathy in children is often challenging. A genetic predisposition to neurological decompensation should be suspected in case of recurrent episodes, even if an alternative diagnosis has been established. Indeed, febrile infections may only represent the trigger of neurological involvement. In these patients, the knowledge of a genetic predisposing factors may help in the prevention of neurological episodes by the prompt use of anti-pyrectics and preventive measures as appropriate vaccination.


2021 ◽  
Vol 11 ◽  
Author(s):  
Di Wu ◽  
Hong-Qiang Yu ◽  
Hao-Jun Xiong ◽  
Yu-Jun Zhang ◽  
Xiao-Tong Lin ◽  
...  

The sodium pump α3 subunit is associated with colorectal liver metastasis. However, the underlying mechanism involved in this effect is not yet known. In this study, we found that the expression levels of the sodium pump α3 subunit were positively associated with metastasis in colorectal cancer (CRC). Knockdown of the α3 subunit or inhibition of the sodium pump could significantly inhibit the migration of colorectal cancer cells, whereas overexpression of the α3 subunit promoted colorectal cancer cell migration. Mechanistically, the α3 subunit decreased p53 expression, which subsequently downregulated PTEN/IGFBP3 and activated mTOR, leading to the promotion of colorectal cancer cell metastasis. Reciprocally, knockdown of the α3 subunit or inhibition of the sodium pump dramatically blocked this effect in vitro and in vivo via the downregulation of mTOR activity. Furthermore, a positive correlation between α3 subunit expression and mTOR activity was observed in an aggressive CRC subtype. Conclusions: Elevated expression of the sodium pump α3 subunit promotes CRC liver metastasis via the PTEN/IGFBP3-mediated mTOR pathway, suggesting that sodium pump α3 could represent a critical prognostic marker and/or therapeutic target for this disease.


Marine Drugs ◽  
2021 ◽  
Vol 19 (7) ◽  
pp. 398
Author(s):  
Man Guo ◽  
Jinpeng Yu ◽  
Xiaopeng Zhu ◽  
Dongting Zhangsun ◽  
Sulan Luo

Nicotinic acetylcholine receptor (nAChR), a member of pentameric ligand-gated ion channel transmembrane protein composed of five subunits, is widely distributed in the central and peripheral nervous system. The nAChRs are associated with various neurological diseases, including schizophrenia, Alzheimer’s disease, Parkinson’s disease, epilepsy and neuralgia. Receptors containing the α3 subunit are associated with analgesia, generating our interest in their role in pharmacological studies. In this study, α-conotoxin (α-CTx) LvIF was identified as a 16 amino acid peptide using a genomic DNA clone of Conus lividus (C. lividus). The mature LvIF with natural structure was synthesized by a two-step oxidation method. The blocking potency of α-CTx lvIF on nAChR was detected by a two-electrode voltage clamp. Our results showed that α-CTx LvIF was highly potent against rα3β2 and rα6/α3β2β3 nAChR subtypes, The half-maximal inhibitory concentration (IC50) values of α-CTx LvIF against rα3β2 and rα6/α3β2β3 nAChRs expressed in Xenopus oocytes were 8.9 nM and 14.4 nM, respectively. Furthermore, α-CTx LvIF exhibited no obvious inhibition on other nAChR subtypes. Meanwhile, we also conducted a competitive binding experiment between α-CTxs MII and LvIF, which showed that α-CTxs LvIF and MII bind with rα3β2 nAChR at the partial overlapping domain. These results indicate that the α-CTx LvIF has high potential as a new candidate tool for the studying of rα3β2 nAChR related neurophysiology and pharmacology.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3065
Author(s):  
Michael Ferns

Nicotinic acetylcholine receptors (nAChRs) mediate fast synaptic transmission at neuromuscular and autonomic ganglionic synapses in the peripheral nervous system. The postsynaptic localization of muscle ((α1)2β1γδ) and neuronal ((α3β4)2β4) nicotinic receptors at these synapses is mediated by interactions between the nAChR intracellular domains and cytoplasmic scaffolding proteins. Recent high resolution structures and functional studies provide new insights into the molecular determinants that mediate these interactions. Surprisingly, they reveal that the muscle nAChR binds 1–3 rapsyn scaffolding molecules, which dimerize and thereby form an interconnected lattice between receptors. Moreover, rapsyn binds two distinct sites on the nAChR subunit cytoplasmic loops; the MA-helix on one or more subunits and a motif specific to the β subunit. Binding at the latter site is regulated by agrin-induced phosphorylation of βY390, and increases the stoichiometry of rapsyn/AChR complexes. Similarly, the neuronal nAChR may be localized at ganglionic synapses by phosphorylation-dependent interactions with 14-3-3 adaptor proteins which bind specific motifs in each of the α3 subunit cytoplasmic loops. Thus, postsynaptic localization of nAChRs is mediated by regulated interactions with multiple scaffolding molecules, and the stoichiometry of these complexes likely helps regulate the number, density, and stability of receptors at the synapse.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2659
Author(s):  
Shinhui Lee ◽  
Woog Jung ◽  
Sanung Eom ◽  
Hye Duck Yeom ◽  
Heui-Dong Park ◽  
...  

Betulinic acid (BA) is a major constituent of Zizyphus seeds that have been long used as therapeutic agents for sleep-related issues in Asia. BA is a pentacyclic triterpenoid. It also possesses various anti-cancer and anti-inflammatory effects. Current commercially available sleep aids typically use GABAergic regulation, for which many studies are being actively conducted. However, few studies have focused on acetylcholine receptors that regulate wakefulness. In this study, we utilized BA as an antagonist of α3β4 nicotinic acetylcholine receptors (α3β4 nAChRs) known to regulate rapid-eye-movement (REM) sleep and wakefulness. Effects of BA on α3β4 nAChRs were concentration-dependent, reversible, voltage-independent, and non-competitive. Site-directed mutagenesis and molecular-docking studies confirmed the binding of BA at the molecular level and showed that the α3 subunit L257 and the β4 subunit I263 residues affected BA binding. These data demonstrate that BA can bind to a binding site different from the site for the receptor’s ligand, acetylcholine (ACh). This suggests that BA may be an effective antagonist that is unaffected by large amounts of ACh released during wakefulness and REM sleep. Based on the above experimental results, BA is likely to be a therapeutically useful sleep aid and sedative.


2021 ◽  
Author(s):  
Barbora Kalocayova ◽  
Denisa Snurikova ◽  
Jana Vlkovicova ◽  
Veronika Navarova Stara ◽  
Dominika Michalikova ◽  
...  

Abstract Previously it was shown that for reduction of anxiety and stress of experimental animals, preventive handling seems to be one of the most effective methods. The present study was oriented on Na,K-ATPase, a key enzyme for maintaining proper concentrations of intracellular sodium and potassium ions. Malfunction of this enzyme has an essential role in the development of neurodegenerative diseases. It is known that this enzyme requires approximately 50% of the energy available to the brain. Therefore in the present study utilization of the energy source ATP by Na,K-ATPase in the frontal cerebral cortex, using the method of enzyme kinetics was investigated. As a model of neurodegeneration treatment with Trimethyltin (TMT) was applied. Daily handling (10 min/day) of healthy rats and rats suffering neurodegeneration induced by administration of TMT in a dose of (7.5 mg/kg), at postnatal days 60-102 altered the expression of catalytic subunits of Na,K-ATPase as well as kinetic properties of this enzyme in frontal cerebral cortex of adult male Wistar rats. Everyday handling of rats, beside the previously published beneficial effect on spatial memory was accompanied by improwed maintenance of sodium homeeostasis in frontal cortex of brains. The key system responsible for this proces, the Na,K-ATPase was able to utilize better the energy substrate ATP. In rats with TMT-induced neurodegeneration handling promoted the expresion of α2 isoform of the enzyme which is typical for glial cells. In healthy rats the handling was followed by increased expression α3 subunit which is typical for neurons.


2021 ◽  
pp. 100709
Author(s):  
Sven Wagner ◽  
ChoongKu Lee ◽  
Lucia Rojas ◽  
Christian G. Specht ◽  
JeongSeop Rhee ◽  
...  

2021 ◽  
Author(s):  
Yuka Nishibata ◽  
Mayu Nonokawa ◽  
Yuto Tamura ◽  
Rio Higashi ◽  
Ku Suzuki ◽  
...  

Abstract ObjectiveAnti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is sometimes complicated by anti-glomerular basement membrane (GBM) disease. Proteases, including elastase, released from neutrophils activated by ANCA are implicated in the pathogenesis of AAV. Epitopes of anti-GBM antibody exist in the α3-subunit non-collagenous (NC1) domain of collagen type IV [Col (IV)]. This region, called α3(IV)NC1, is structurally cryptic. This study aimed to determine the production mechanism of anti-GBM antibody in AAV.MethodsWe first examined whether α3(IV)NC1 could be revealed by the digestion of formalin-fixed, paraffin-embedded (FFPE) normal kidney sections and Col (IV) by proteases, including neutrophil elastase, using immunohistochemistry (IHC) and enzyme-linked immunosorbent assay (ELISA). Next, the reveal of α3(IV)NC1 and the infiltration of CD11c+ macrophages in the affected kidneys were evaluated by IHC and immunofluorescent staining using FFPE sections. Finally, the production of anti-GBM antibody in AAV rats was determined by ELISA.Resultsα3(IV)NC1 was revealed by the digestion of FFPE normal kidney sections and Col (IV) by proteases. Although the reveal of α3(IV)NC1 was observed in sclerotic glomeruli regardless of causative diseases, CD11c+ macrophages near α3(IV)NC1 were characteristics of AAV. Anti-GBM antibody was produced subsequent to ANCA in some AAV rats. IHC demonstrated the reveal of α3(IV)NC1 in affected renal tissues and the infiltration of CD11c+ macrophages around the sites.ConclusionThe collective findings suggest that, in AAV, proteases released from neutrophils activated by ANCA digest Col (IV) and result in the reveal of α3(IV)NC1, CD11c+ macrophages present GBM epitopes, and then the host’s immune system produce anti-GBM antibody.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0246678
Author(s):  
Keiko Ikeda ◽  
Adriana A. Tienda ◽  
Fiona E. Harrison ◽  
Kiyoshi Kawakami

Na+,K+-ATPase is a crucial protein responsible for maintaining the electrochemical gradients across the cell membrane. The Na+,K+-ATPase is comprised of catalytic α, β, and γ subunits. In adult brains, the α3 subunit, encoded by ATP1A3, is predominantly expressed in neurons, whereas the α2 subunit, encoded by ATP1A2, is expressed in glial cells. In foetal brains, the α2 is expressed in neurons as well. Mutations in α subunits cause a variety of neurologic disorders. Notably, the onset of symptoms in ATP1A2- and ATP1A3-related neurologic disorders is usually triggered by physiological or psychological stressors. To gain insight into the distinct roles of the α2 and α3 subunits in the developing foetal brain, whose developmental dysfunction may be a predisposing factor of neurologic disorders, we compared the phenotypes of mouse foetuses with double homozygous knockout of Atp1a2 and Atp1a3 (α2α3-dKO) to those with single knockout. The brain haemorrhage phenotype of α2α3-dKO was similar to that of homozygous knockout of the gene encoding ascorbic acid (ASC or vitamin C) transporter, SVCT2. The α2α3-dKO brain showed significantly decreased level of ASC compared with the wild-type (WT) and single knockout. We found that the ASC content in the basal ganglia and cerebellum was significantly lower in the adult Atp1a3 heterozygous knockout mouse (α3-HT) than in the WT. Interestingly, we observed a significant decrease in the ASC level in the basal ganglia and cerebellum of α3-HT in the peripartum period, during which mice are under physiological stress. These observations indicate that the α2 and α3 subunits independently contribute to the ASC level in the foetal brain and that the α3 subunit contributes to ASC transport in the adult basal ganglia and cerebellum. We propose that decreases in ASC levels may affect neural network development and are linked to the pathophysiology of ATP1A2- and ATP1A3-related neurologic disorders.


Sign in / Sign up

Export Citation Format

Share Document