scholarly journals Sensorimotor cortex beta oscillations reflect motor skill learning ability after stroke

2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Svenja Espenhahn ◽  
Holly E Rossiter ◽  
Bernadette C M van Wijk ◽  
Nell Redman ◽  
Jane M Rondina ◽  
...  

Abstract Recovery of skilled movement after stroke is assumed to depend on motor learning. However, the capacity for motor learning and factors that influence motor learning after stroke have received little attention. In this study, we first compared motor skill acquisition and retention between well-recovered stroke patients and age- and performance-matched healthy controls. We then tested whether beta oscillations (15–30 Hz) from sensorimotor cortices contribute to predicting training-related motor performance. Eighteen well-recovered chronic stroke survivors (mean age 64 ± 8 years, range: 50–74 years) and 20 age- and sex-matched healthy controls were trained on a continuous tracking task and subsequently retested after initial training (45–60 min and 24 h later). Scalp electroencephalography was recorded during the performance of a simple motor task before each training and retest session. Stroke patients demonstrated capacity for motor skill learning, but it was diminished compared to age- and performance-matched healthy controls. Furthermore, although the properties of beta oscillations prior to training were comparable between stroke patients and healthy controls, stroke patients did show less change in beta measures with motor learning. Lastly, although beta oscillations did not help to predict motor performance immediately after training, contralateral (ipsilesional) sensorimotor cortex post-movement beta rebound measured after training helped predict future motor performance, 24 h after training. This finding suggests that neurophysiological measures such as beta oscillations can help predict response to motor training in chronic stroke patients and may offer novel targets for therapeutic interventions.

2020 ◽  
Author(s):  
Svenja Espenhahn ◽  
Holly E Rossiter ◽  
Bernadette CM van Wijk ◽  
Nell Redman ◽  
Jane M Rondina ◽  
...  

AbstractRecovery of skilled movement after stroke is assumed to depend on motor learning. However, the capacity for motor learning and factors that influence motor learning after stroke have received little attention. In this study we firstly compared motor skill acquisition and retention between well-recovered stroke patients and age- and performance-matched healthy controls. We then tested whether beta oscillations (15–30Hz) from sensorimotor cortices contribute to predicting training-related motor performance.Eighteen well-recovered chronic stroke survivors (mean age 64±8 years, range 50–74 years) and twenty age- and sex-matched healthy controls were trained on a continuous tracking task and subsequently retested after initial training (45–60 min and 24 hours later). Scalp EEG was recorded during the performance of a simple motor task before each training and retest session. Stroke patients demonstrated capacity for motor skill learning, but it was diminished compared to age- and performance-matched healthy controls. Further, although the properties of beta oscillations prior to training were comparable between stroke patients and healthy controls, stroke patients did show less change in beta measures with motor learning. Lastly, although beta oscillations did not help to predict motor performance immediately after training, contralateral (ipsilesional) sensorimotor cortex post-movement beta rebound (PMBR) measured after training helped predict future motor performance, 24 hours after training. This finding suggests that neurophysiological measures such as beta oscillations can help predict response to motor training in chronic stroke patients and may offer novel targets for therapeutic interventions.


2019 ◽  
Vol 31 (4) ◽  
pp. 212-215
Author(s):  
Sung Min Son ◽  
Yoon Tae Hwang ◽  
Seok Hyun Nam ◽  
Yonghyun Kwon

1992 ◽  
Vol 12 (1) ◽  
pp. 110-119 ◽  
Author(s):  
Krystyna R. Isaacs ◽  
Brenda J. Anderson ◽  
Adriana A. Alcantara ◽  
James E. Black ◽  
William T. Greenough

This study compared the morphology of cerebellar cortex in adult female rats exposed for 1 month to repetitive exercise, motor learning, or an inactive condition. In the exercise conditions, rats that were run on a treadmill or housed with access to a running wheel had a shorter diffusion distance from blood vessels in the molecular layer of the paramedian lobule when compared to rats housed individually or rats that participated in a motor skill learning task. Rats taught complex motor skills substantially increased the volume of the molecular layer per Purkinje neuron and increased blood vessel number sufficiently to maintain the diffusion distance. These results dissociate angiogenesis associated with increased neuropil volume (as seen in the motor learning group) from angiogenesis associated with increased metabolic demands (as seen in the exercise groups). While the volume fraction of mitochondria did not differ among groups, the mitochondrial volume fraction per Purkinje cell was significantly increased in the motor skill rats. This appears to parallel the previously reported increase in synapses and associated neuropil volume change.


2014 ◽  
Vol 112 (1) ◽  
pp. 156-164 ◽  
Author(s):  
James P. Coxon ◽  
Nicola M. Peat ◽  
Winston D. Byblow

Motor learning requires practice over a period of time and depends on brain plasticity, yet even for relatively simple movements, there are multiple practice strategies that can be used for skill acquisition. We investigated the role of intracortical inhibition in the primary motor cortex (M1) during motor skill learning. Event-related transcranial magnetic stimulation (TMS) was used to assess corticomotor excitability and inhibition thought to involve synaptic and extrasynaptic γ-aminobutyric acid (GABA). Short intracortical inhibition (SICI) was assessed using 1- and 2.5-ms interstimulus intervals (ISIs). Participants learned a novel, sequential pinch-grip task on a computer in either a repetitive or interleaved practice structure. Both practice structures showed equivalent levels of motor performance at the end of acquisition and at retention 1 wk later. There was a novel task-related modulation of 1-ms SICI. Repetitive practice elicited a greater reduction of 1- and 2.5-ms SICI, i.e., disinhibition, between rest and task acquisition, compared with interleaved practice. These novel findings support the use of a repetitive practice structure for motor learning because the associated effects within M1 have relevance for motor rehabilitation.


2005 ◽  
Vol 28 (1) ◽  
pp. 70-71 ◽  
Author(s):  
Luca A. Finelli ◽  
Terrence J. Sejnowski

Learning procedural skills involves improvement in speed and accuracy. Walker proposes two stages of memory consolidation: enhancement, which requires sleep, and stabilization, which does not require sleep. Speed improvement for a motor learning task but not accuracy occurs after sleep-dependent enhancement. We discuss this finding in the context of computational models and underlying sleep mechanisms.


2009 ◽  
Vol 89 (4) ◽  
pp. 370-383 ◽  
Author(s):  
Catherine F Siengsukon ◽  
Lara A Boyd

Sleep following motor skill practice has repeatedly been demonstrated to enhance motor skill learning off-line (continued overnight improvements in motor skill that are not associated with additional physical practice) for young people who are healthy. Mounting evidence suggests that older people who are healthy fail to demonstrate sleep-dependent off-line motor learning. However, little is known regarding the influence of sleep on motor skill enhancement following damage to the brain. Emerging evidence suggests that individuals with brain damage, particularly following stroke, do benefit from sleep to promote off-line motor skill learning. Because rehabilitation following stroke requires learning new, and re-learning old, motor skills, awareness that individuals with stroke benefit from a period of sleep following motor skill practice to enhance skill learning could affect physical therapist practice. The objective of this article is to present the evidence demonstrating sleep-dependent off-line motor learning in young people who are healthy and the variables that may influence this beneficial sleep-dependent skill enhancement. In young people who are healthy, these variables include the stages of memory formation, the type of memory, the type of instruction provided (implicit versus explicit learning), and the task utilized. The neural mechanisms thought to be associated with sleep-dependent off-line motor learning also are considered. Research examining whether older adults who are healthy show the same benefits of sleep as do younger adults is discussed. The data suggest that older adults who are healthy do not benefit from sleep to promote off-line skill enhancement. A possible explanation for the apparent lack of sleep-dependent off-line motor learning by older adults who are healthy is presented. Last, emerging evidence showing that individuals with chronic stroke demonstrate sleep-dependent off-line motor skill learning and some of the possible mechanisms for this effect are considered.


Sign in / Sign up

Export Citation Format

Share Document