diffusion distance
Recently Published Documents


TOTAL DOCUMENTS

146
(FIVE YEARS 29)

H-INDEX

20
(FIVE YEARS 2)

2021 ◽  
Vol 22 (21) ◽  
pp. 11928
Author(s):  
Bing Sun ◽  
Songqian Huang ◽  
Longfei Huang ◽  
Lijuan Yang ◽  
Jian Gao ◽  
...  

Loach (Misgurnus anguillicaudatus) is well known to perform air-breathing through the posterior intestine and skin. However, we find here for the first time a unique central vascular structure in the loach barbel, with a blood–gas diffusion distance as short as that of the posterior intestine. Under acute hypoxia, the distance of loach barbels became significantly shorter. Moreover, barbel removal significantly decreased air-breathing frequency of the loach. These findings imply that the barbel is another air-breathing organ of the loach. For further investigation of loach barbel air-breathing, a transcriptome analysis of barbels with air exposure treatment was performed. A total of 2546 differentially expressed genes (DEGs) between the T-XU (air exposure) and C-XU (control) group were identified, and 13 key DEGs related to barbel air-breathing were screened out. On this foundation, sequence, expression, and location analysis results indicated an important positive role of fibronectin 1b (fn1b) in loach barbel air-breathing. We further generated an fn1b-depletion loach (MT for short) using the CRISPR/Cas9 technique. It was indicated that depletion of fn1b could weaker barbel air-breathing ability. In conclusion, due to nonlethal and regenerative characteristics, the loach barbel, a newly discovered and fn1b-related fish air-breathing organ, can be a good model for fish air-breathing research.


2021 ◽  
Vol 2085 (1) ◽  
pp. 012027
Author(s):  
Guanghui Yuan ◽  
Rui Cao ◽  
Ye Chen ◽  
Xinyu Ge ◽  
Qiong Xu ◽  
...  

Abstract Without using any templates, a ternary MoS2/graphene/carbon nanotubes (MoS2/GN/CNT) aerogel compostie is prepared by convenient hydrothermal synthesis method. The free-standing MoS2/GN/CNT aerogel can be cut directly as binder free electrodes in lithium-ion batteries. The MoS2/GN/CNT electrodes can hold as high as 695 and 579 mAh g−1 discharge capacities after 200 cycles at 200 mA g−1 in MoS2/GN/CNT//Li half cells and MoS2/GN/CNT//LiCoO2 full-cells, respectively. The strengthened electrochemical properities are owed by the thin GN/CNT layers and their jagged and wrinkled surfaces, which can enhance the composite conductivity and shorten the Li+ diffusion distance, as well as buffer the volume change of electrodes druing the charge-discharge cycles.


2021 ◽  
Vol 21 (5) ◽  
pp. 89-97
Author(s):  
Woonyong Hwang

Sulfuric acid is used for various purposes in industry, but research on sulfuric acid accidents is lacking. Thus, to prepare safety measures, it is necessary to analyze the risk distance for such accidents, particularly sulfuric acid leaks. As part of this study, 112 scenarios of varying wind speeds and leakage amounts were prepared and a risk-distance analysis was carried out at an industrial plant. The scenarios were then analyzed based on hazard concentrations. The analysis revealed that if the entire amount of sulfuric acid leaked from the industrial plant, it spread up to 9,978 m at a wind speed of 6 m/s. Residential areas were also included within the maximum diffusion distance, and it was confirmed that the leak also affected neighboring administrative districts. Therefore, it is necessary to prepare a plan to prevent and respond to sulfuric acid leakage accidents in industrial complexes.


2021 ◽  
Vol 17 (10) ◽  
pp. e1009473
Author(s):  
Daipeng Chen ◽  
Yuyi Xue ◽  
Yanni Xiao

Infectious diseases attack humans from time to time and threaten the lives and survival of people all around the world. An important strategy to prevent the spatial spread of infectious diseases is to restrict population travel. With the reduction of the epidemic situation, when and where travel restrictions can be lifted, and how to organize orderly movement patterns become critical and fall within the scope of this study. We define a novel diffusion distance derived from the estimated mobility network, based on which we provide a general model to describe the spatiotemporal spread of infectious diseases with a random diffusion process and a deterministic drift process of the population. We consequently develop a multi-source data fusion method to determine the population flow in epidemic areas. In this method, we first select available subregions in epidemic areas, and then provide solutions to initiate new travel flux among these subregions. To verify our model and method, we analyze the multi-source data from mainland China and obtain a new travel flux triggering scheme in the selected 29 cities with the most active population movements in mainland China. The testable predictions in these selected cities show that reopening the borders in accordance with our proposed travel flux will not cause a second outbreak of COVID-19 in these cities. The finding provides a methodology of re-triggering travel flux during the weakening spread stage of the epidemic.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5679
Author(s):  
Xiong Zheng ◽  
Jin Yan ◽  
Jinping Wang ◽  
Xiaofeng Lu

The uniformity of secondary air (SA) in large-scale CFB boilers has an important influence on gas-solid flow and combustion, but was seldom considered in previous studies. Numerical simulation based on the Eulerian–Eulerian and RNG k-ε turbulence models was conducted to explore the influence of SA uniformity and load variation on jet penetration, diffusion characteristics and gas-solid mixing in the first 600 MW supercritical CFB boiler. The results showed that better SA uniformity was conductive to the uniformity of SA penetration and gas-solid mixing along the furnace height, although the penetration depth and diffusion distance showed an opposite trend. In addition, the penetration depth and diffusion distance got enhanced with higher boiler load. The inner and outer SA jets could not cover the furnace width, and the uneven SA uniformity led to a huge deviation of the solid concentration within 10 m of the air distributor. Eventually, a calculation model was successfully established for predicting the penetration depth of inclined thermal SA jets during boiler operation.


Catalysts ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 832
Author(s):  
Chengfei Wang ◽  
Tongxin Han ◽  
Chang Xin ◽  
Hui Miao

Adjusting the structure of g-C3N4 to significantly enhance its photocatalytic activity has attracted considerable attention. Herein, a novel, sponge-like g-C3N4 with a porous structure is prepared from the annealing of protonated melamine under N2/H2 atmosphere (PH-CN). Compared to bulk g-C3N4 via calcination of melamine under ambient atmosphere (B-CN), PH-CN displays thinner nanosheets and a higher surface area (150.1 m2/g), which is a benefit for shortening the diffusion distance of photoinduced carriers, providing more active sites, and finally favoring the enhancement of the photocatalytic activity. Moreover, it can be clearly observed from the UV-vis spectrum that PH-CN displays better performance for harvesting light compared to B-CN. Additionally, the PH-CN is prepared with a larger band gap of 2.88 eV with the Fermi level and conduction band potential increased and valence band potential decreased, which could promote the water redox reaction. The application experiment results show that the hydrogen evolution rate on PH-CN was nearly 10 times higher than that of B-CN, which was roughly 4104 μmol h−1 g−1. The method shown in this work provides an effective approach to adjust the structure of g-C3N4 with considerable photocatalytic hydrogen evolution activity.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Huiqing Lian ◽  
Haiyang Yi ◽  
Zhenxue Dai ◽  
Junwen Yang ◽  
Zhenxing Ji ◽  
...  

Grouting is a common and important technique for water bursting prevention in coal mines; the success of grouting in coal mines depends highly on the flowability of grouting materials and the strength of the hardened body as well. In this paper, a series of performance tests, in terms of the water-cement ratio, viscosity, drainage rate, presetting time, final setting time, compressive strength, and permeability were conducted on the cement-fly ash-based grout at various mixture ratios. The evolution of these performances versus different mixture ratios was analyzed; targeting at the reasonable flowability and hardened strength of grouting materials, an optimized mixture ratio was recognized for water bursting prevention in coal mines. Furthermore, the diffusion experiments of optimized grout material were designed taking into account the influence of confining and hydraulic pressure in the porous medium. As a result, the confining and hydraulic pressures have a linear negative correlation with the diffusion distance of grout materials. These results have guiding significance to water bursting prevention in coal mines.


2021 ◽  
Vol 21 (2) ◽  
pp. 23-31
Author(s):  
Woonyong Hwang

In order to check the risk of hydrogen peroxide leakage from the seaport, the leakage amount was changed from 1.0 ton to 10.0 tons, with the maximum and minimum diffusion distances per month in 2020 being subsequently calculated. A total of 82 scenarios were created to confirm the change in the diffusion distance according to the amount of leakage. The scenario was analyzed based on the distance at which the risk concentration was maintained through the ALOHA Air Dispersion Models. As indicated by the analysis, when the amount of leakage is relatively large, the temperature is also high and the wind speed is fast - resulting in the maximum spread. However, when the amount of leakage was relatively minimal, the temperature was low and the wind speed remained fast - this kept diffusion to the minimum. Concerning characteristics of fast wind speeds, the dispersion length changed based on amounts of leakages where PAC-1 contains 2.0 tons, PAC-2 contains 4.0 tons, and PAC-3 contains 5.0 tons. In addition, when the amount of leakage equaled 10.0 tons, and the wind speed was high, the dispersion length reached up to 10 kms. In light of this, it was confirmed that even adjacent administrative districts were affected. Therefore, it is necessary to establish appropriate measures to prevent damage by utilizing the diffusion distance caused by chemical leakages.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Ye Yuan ◽  
Dengpan Qiao ◽  
Shibo Yu

Aimed at the problem to plug the main ore pass with the large collapse at Xingshan Iron Mine, the viscosity-time test and the heap perfusion test of cement-silicate grout in a loose rock mass are carried out. The relationship between the vertical diffusion distance of cement-silicate grout and setting time of grout is studied, and research results are applied to the design of plugging engineering of the main ore pass in -330 m. Based on the numerical simulation of the plugging structure and the long-term stress monitoring of the cable sensors, the stability of the plugging structure itself and the control for the movement of shafts nearby are comprehensively evaluated. The test results show that for a specific loose rock mass, the vertical diffusion distance of cement-silicate grout in the loose rock mass is a power function of grout setting time. Based on the design concept to plug the main ore pass with the large collapse using artificially constructed “bite-bonded arch,” the plugging design and construction procedures are proposed. A numerical model and long-term monitoring of cable stress show that the plugging structure is stable and has an obvious effect on the control movement of abutment shafts.


Author(s):  
Jie Li ◽  
Xiaosong Wei ◽  
Yuqing Hu ◽  
Yingchao Gao ◽  
Yufei Zhang ◽  
...  

Exogeneous reactive oxygen species (ROS) generation is a promising antibacterial strategy. The shorter diffusion distance with transient reaction of ROS restricts its precise release at the inflammation sites, so it...


Sign in / Sign up

Export Citation Format

Share Document