The ‘Direct Attack’ Strategy for Poverty Removal: Implementation Methodology

1981 ◽  
Vol 16 (1) ◽  
pp. 36-43
Author(s):  
SANJAY SINHA
2013 ◽  
Author(s):  
Patrick Burke
Keyword(s):  

1985 ◽  
Vol 50 (4) ◽  
pp. 845-853 ◽  
Author(s):  
Miloslav Šorm ◽  
Miloslav Procházka ◽  
Jaroslav Kálal

The course of hydrolysis of an ester, 4-acetoxy-3-nitrobenzoic acid catalyzed with poly(1-methyl-3-allylimidazolium bromide) (IIa), poly[l-methyl-3-(2-propinyl)imidazolium chloride] (IIb) and poly[l-methyl-3-(2-methacryloyloxyethyl)imidazolium bromide] (IIc) in a 28.5% aqueous ethanol was investigated as a function of pH and compared with low-molecular weight models, viz., l-methyl-3-alkylimidazolium bromides (the alkyl group being methyl, propyl, and hexyl, resp). Polymers IIb, IIc possessed a higher activity at pH above 9, while the models were more active at a lower pH with a maximum at pH 7.67. The catalytic activity at the higher pH is attributed to an attack by the OH- group, while at the lower pH it is assigned to a direct attack of water on the substrate. The rate of hydrolysis of 4-acetoxy-3-nitrobenzoic acid is proportional to the catalyst concentration [IIc] and proceeds as a first-order reaction. The hydrolysis depends on the composition of the solvent and was highest at 28.5% (vol.) of ethanol in water. The hydrolysis of a neutral ester, 4-nitrophenyl acetate, was not accelerated by IIc.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hussein Abulkasim ◽  
Atefeh Mashatan ◽  
Shohini Ghose

AbstractQuantum key agreement enables remote participants to fairly establish a secure shared key based on their private inputs. In the circular-type multiparty quantum key agreement mode, two or more malicious participants can collude together to steal private inputs of honest participants or to generate the final key alone. In this work, we focus on a powerful collusive attack strategy in which two or more malicious participants in particular positions, can learn sensitive information or generate the final key alone without revealing their malicious behaviour. Many of the current circular-type multiparty quantum key agreement protocols are not secure against this collusive attack strategy. As an example, we analyze the security of a recently proposed multiparty key agreement protocol to show the vulnerability of existing circular-type multiparty quantum key agreement protocols against this collusive attack. Moreover, we design a general secure multiparty key agreement model that would remove this vulnerability from such circular-type key agreement protocols and describe the necessary steps to implement this model. The proposed model is general and does not depend on the specific physical implementation of the quantum key agreement.


2021 ◽  
Vol 11 (15) ◽  
pp. 7161
Author(s):  
Igor Azkarate ◽  
Mikel Ayani ◽  
Juan Carlos Mugarza ◽  
Luka Eciolaza

Industrial discrete event dynamic systems (DEDSs) are commonly modeled by means of Petri nets (PNs). PNs have the capability to model behaviors such as concurrency, synchronization, and resource sharing, compared to a step transition function chart or GRAphe Fonctionnel de Commande Etape Transition (GRAFCET) which is a particular case of a PN. However, there is not an effective systematic way to implement a PN in a programmable logic controller (PLC), and so the implementation of such a controller outside a PLC in some external software that will communicate with the PLC is very common. There have been some attempts to implement PNs within a PLC, but they are dependent on how the logic of places and transitions is programmed for each application. This work proposes a novel application-independent and platform-independent PN implementation methodology. This methodology is a systematic way to implement a PN controller within industrial PLCs. A great portion of the code will be validated automatically prior to PLC implementation. Net structure and marking evolution will be checked on the basis of PN model structural analysis, and only net interpretation will be manually coded and error-prone. Thus, this methodology represents a systematic and semi-compiled PN implementation method. A use case supported by a digital twin (DT) is shown where the automated solution required by a manufacturing system is carried out and executed in two different devices for portability testing, and the scan cycle periods are compared for both approaches.


1997 ◽  
Vol 34 (01) ◽  
pp. 192-207 ◽  
Author(s):  
Anyue Chen ◽  
Eric Renshaw

An M/M/1 queue is subject to mass exodus at rate β and mass immigration at rate when idle. A general resolvent approach is used to derive occupation probabilities and high-order moments. This powerful technique is not only considerably easier to apply than a standard direct attack on the forward p.g.f. equation, but it also implicitly yields necessary and sufficient conditions for recurrence, positive recurrence and transience.


Sign in / Sign up

Export Citation Format

Share Document