average signal intensity
Recently Published Documents


TOTAL DOCUMENTS

9
(FIVE YEARS 4)

H-INDEX

3
(FIVE YEARS 0)

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A969-A969
Author(s):  
Laura Donovan ◽  
Bei Hopkins ◽  
Ben Draper ◽  
Rivani Shah ◽  
Kristin Roman ◽  
...  

BackgroundMedulloblastoma recurrence occurs in approximately 30% of patients and is universally fatal, presenting one of the most significant unmet clinical challenges in pediatric oncology. It is now clear that medulloblastomas are complex ecosystems, evolving under selective pressure from their microenvironment and cell of origin. Different tumor-immune cell interactions, including, but not limited to, tumor-infiltrating lymphocytes and various tumor suppressive myeloid cell populations, significantly hamper effective treatment strategies for primary, metastatic, and recurrent tumors. Recurrent medulloblastomas are rarely biopsied making biological material for interrogation scarce. Research has assumed that recurrent and primary medulloblastoma tumors have similar biological composition and therefore will respond to the same therapeutic regimens, however, therapies designed using primary biopsies, but tested in Phase I/II trials on children with recurrent disease, have been largely unsuccessful. We hypothesize that there are select immunosuppressive population differences within primary vs. recurrent tumor microenvironments (TME) that need to be elucidated in order to improve treatment modalities and outcomes in pediatric patients.MethodsUsing Akoya’s MOTiFTM PD-1/PD-L1 Panel: Auto Melanoma Kit, the staining protocol was adapted for optimal staining performance on human brain tissue. Following this, 24-formalin-fixed, paraffin embedded pediatric medulloblastoma samples (primary and recurrent biopsies from 12 patients) were stained for the following markers on the Leica BOND RX. Multispectral images were acquired using the Vectra Polaris, and five regions of interest selected on each image. An analysis algorithm was developed using inForm tissue analysis software, and samples were batch processed and data exported. Cell counts, densities, and spatial parameters were generated using the R-script package phenoptrReports to produce outputs of the image analysis data.ResultsFollowing spectral unmixing and autofluorescence isolation, no signal crosstalk was observed. The average signal intensity counts for all markers was found to be within the recommended ranges of 10–30, with a coefficient of variation of ≤15%, indicating successful and consistent staining of the medulloblastoma samples. Comparison between primary vs. recurrent tissues revealed distinctive spatial differences between immune-tumor cell interactions.ConclusionsWe have demonstrated successful adaptation of the MOTiF PD-1/PD-L1 Melanoma panel kit in conjunction with the Phenoptics workflow to support examination of the TME in patient-matched primary and recurrent pediatric medulloblastoma tumor biopsies. Our study provides the first insight into distinctive spatial interactions between primary vs. recurrent tissues, which may improve strategies to comprehend cancer progression, immune surveillance, and ultimately the development of rational, targeted therapeutics based on the differences between the tumor compartments and their immune-microenvironment.Ethics ApprovalEthical approval obtained by Brain UK, ref: 20/008. All participants gave consent to use of their material.


Author(s):  
Hannes Schacht ◽  
Inke Regina König ◽  
Johannes Hensler ◽  
Peter Schramm ◽  
Jan Küchler ◽  
...  

Abstract Purpose Together with the foramen ovale, the middle meningeal artery (MMA) looks like a high heel shoe print on axial time-of-flight magnetic resonance angiography (TOF-MRA) images, with the MMA resembling the heel. Cranial dural arteriovenous fistulas (DAVF) are often fed by the MMA, which can lead to an increase of signal intensity and diameter of this vessel, resulting in a more “shiny” and “thick” high heel print appearance than on the contralateral side. We describe this finding as a novel radiologic sign and provide cut-off values for the ratios of MMA signal intensities and diameters for predicting the presence of a DAVF. Methods A total of 84 TOF-MRA examinations of 44 patients with DAVFs (40 with unilateral MMA feeders, 4 with bilateral feeders) and of 40 patients without DAVFs were included. Diameters and signal intensities of both MMAs were measured by two raters and evaluated using receiver operating characteristic analysis. Results The diameters of feeding and non-feeding MMAs differed significantly, as did the ratios of signal intensities and of diameters of DAVF and control patients (P < 0.0001). Cut-off values were 1.25 for average signal intensity ratio (shiny high heel sign) and 1.21 for diameter ratio (thick high heel sign). The combination of the “shiny” and the “thick” high heel sign resulted in the highest sensitivity (92.5%) and positive predictive value (95%). Conclusion The described sign seems promising for the detection of DAVFs with noncontrast-enhanced MRI. The TOF-MRA source images should be reviewed with special attention to the MMA.


Author(s):  
Sarah McElroy ◽  
Jessica M. Winfield ◽  
Olwen Westerland ◽  
Geoff Charles-Edwards ◽  
Joanna Bell ◽  
...  

Abstract Objective To compare integrated slice-specific dynamic shim (iShim) with distortion correction post-processing to conventional 3D volume shim for the reduction of artefacts and signal loss in 1.5 T whole-body diffusion-weighted imaging (WB-DWI). Methods Ten volunteers underwent WB-DWI using conventional 3D volume shim and iShim. Forty-eight consecutive patients underwent WB-DWI with either volume shim (n = 24) or iShim (n = 24) only. For all subjects, displacement of the spinal cord at imaging station interfaces was measured on composed b = 900 s/mm2 images. The signal intensity ratios, computed as the average signal intensity in a region of high susceptibility gradient (sternum) divided by the average signal intensity in a region of low susceptibility gradient (vertebral body), were compared in volunteers. For patients, image quality was graded from 1 to 5 (1 = Poor, 5 = Excellent). Signal intensity discontinuity scores were recorded from 1 to 4 (1 = 2 + steps, 4 = 0 steps). A p value of < 0.05 was considered significant. Results Spinal cord displacement artefacts were lower with iShim (p < 0.05) at the thoracic junction in volunteers and at the cervical and thoracic junctions in patients (p < 0.05). The sternum/vertebra signal intensity ratio in healthy volunteers was higher with iShim compared with the volume shim sequence (p < 0.05). There were no significant differences between the volume shim and iShim patient groups in terms of image quality and signal intensity discontinuity scores. Conclusion iShim reduced the degree of spinal cord displacement artefact between imaging stations and susceptibility-gradient-induced signal loss.


2020 ◽  
Vol 14 ◽  
Author(s):  
Jin Gu ◽  
Baolin Liu ◽  
Weiran Yan ◽  
Qiaomu Miao ◽  
Jianguo Wei

Significant objects in a scene can make a great contribution to scene recognition. Besides the three scene-selective regions: parahippocampal place area (PPA), retrosplenial complex (RSC), and occipital place area (OPA), some neuroimaging studies have shown that the lateral occipital complex (LOC) is also engaged in scene recognition processing. In this study, the multivariate pattern analysis was adopted to explore the object-scene association in scene recognition when different amounts of significant objects were masked. The scene classification only succeeded in the intact scene in the ROIs. In addition, the average signal intensity in LOC [including the lateral occipital cortex (LO) and the posterior fusiform area (pF)] decreased when there were masked objects, but such a decrease was not observed in scene-selective regions. These results suggested that LOC was sensitive to the loss of significant objects and mainly involved in scene recognition by the object-scene semantic association. The performance of the scene-selective areas may be mainly due to the fact that they responded to the change of the scene's entire attribute, such as the spatial information, when they were employed in the scene recognition processing. These findings further enrich our knowledge of the significant objects' influence on the activation pattern during the process of scene recognition.


F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 563
Author(s):  
Paul M. Macey ◽  
Philip J. Schluter ◽  
Katherine E. Macey ◽  
Ronald M. Harper

We present an approach to analyzing physiologic timetrends recorded during a stimulus by comparing means at each time point using repeated measures analysis of variance (RMANOVA). The approach allows temporal patterns to be examined without an a priori model of expected timing or pattern of response. The approach was originally applied to signals recorded from functional magnetic resonance imaging (fMRI) volumes-of-interest (VOI) during a physiologic challenge, but we have used the same technique to analyze continuous recordings of other physiological signals such as heart rate, breathing rate, and pulse oximetry. For fMRI, the method serves as a complement to whole-brain voxel-based analyses, and is useful for detecting complex responses within pre-determined brain regions, or as a post-hoc analysis of regions of interest identified by whole-brain assessments. We illustrate an implementation of the technique in the statistical software packages R and SAS. VOI timetrends are extracted from conventionally preprocessed fMRI images. A timetrend of average signal intensity across the VOI during the scanning period is calculated for each subject. The values are scaled relative to baseline periods, and time points are binned. In SAS, the procedure PROC MIXED implements the RMANOVA in a single step. In R, we present one option for implementing RMANOVA with the mixed model function “lme”. Model diagnostics, and predicted means and differences are best performed with additional libraries and commands in R; we present one example. The ensuing results allow determination of significant overall effects, and time-point specific within- and between-group responses relative to baseline. We illustrate the technique using fMRI data from two groups of subjects who underwent a respiratory challenge. RMANOVA allows insight into the timing of responses and response differences between groups, and so is suited to physiologic testing paradigms eliciting complex response patterns.


F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 563 ◽  
Author(s):  
Paul M. Macey ◽  
Philip J. Schluter ◽  
Katherine E. Macey ◽  
Ronald M. Harper

We present an approach to analyzing fMRI timetrends from volumes-of-interest (VOI) within and between subject groups using repeated measures analysis of variance (RMANOVA), which allows temporal patterns to be examined without an a priori model of expected timing or pattern of response. The method serves as a complement to whole-brain voxel-based analyses, and is useful for detecting complex responses within pre-determined brain regions, or as a post-hoc analysis of regions of interest identified by whole-brain assessments. We illustrate an implementation of the technique in the statistical software package SAS. VOI timetrends are extracted from conventionally preprocessed fMRI images. A timetrend of average signal intensity across the VOI during the scanning period is calculated for each subject. The values are scaled relative to baseline periods, imported into SAS, and the procedure PROC MIXED implements the RMANOVA. The ensuing results allow determination of significant overall effects, and time-point specific within- and between-group responses relative to baseline. We illustrate the technique using fMRI data from two groups of subjects who underwent a respiratory challenge. RMANOVA allows insight into the timing of responses and response differences between groups, and so is suited to fMRI paradigms eliciting complex response patterns.


2015 ◽  
Vol 27 (4) ◽  
pp. 736-751 ◽  
Author(s):  
Ella Gabitov ◽  
David Manor ◽  
Avi Karni

It is not clear how the engagement of motor mnemonic processes is expressed in online brain activity. We scanned participants, using fMRI, during the paced performance of a finger-to-thumb opposition sequence (FOS), intensively trained a day earlier (T-FOS), and a similarly constructed, but novel, untrained FOS (U-FOS). Both movement sequences were performed in pairs of blocks separated by a brief rest interval (30 sec). We have recently shown that in the primary motor cortex (M1) motor memory was not expressed in the average signal intensity but rather in the across-block signal modulations, that is, when comparing the first to the second performance block across the brief rest interval. Here, using an M1 seed, we show that for the T-FOS, the M1–striatum functional connectivity decreased across blocks; however, for the U-FOS, connectivity within the M1 and between M1 and striatum increased. In addition, in M1, the pattern of within-block signal change, but not signal variability per se, reliably differentiated the two sequences. Only for the U-FOS and only within the first blocks in each pair, the signal significantly decreased. No such modulation was found within the second corresponding blocks following the brief rest interval in either FOS. We propose that a network including M1 and striatum underlies online motor working memory. This network may promote a transient integrated representation of a new movement sequence and readily retrieves a previously established movement sequence representation. Averaging over single events or blocks may not capture the dynamics of motor representations that occur over multiple timescales.


2015 ◽  
Vol 48 (2) ◽  
pp. 69-73 ◽  
Author(s):  
Yvana Lopes Pinheiro da Silva ◽  
Rita Zanlorensi Visneck Costa ◽  
Kátia Elisa Prus Pinho ◽  
Ricardo Rabello Ferreira ◽  
Sueliton Miyamoto Schuindt

Objective:To investigate the effects of dilution of paramagnetic contrast agent with iodinated contrast and xylocaine on the signal intensity during magnetic resonance arthrography, and to improve the paramagnetic contrast agent concentration utilized in this imaging modality.Materials and Methods:Samples specially prepared for the study with three different concentrations of paramagnetic contrast agent diluted in saline, iodinated contrast agent and xylocaine were imaged with fast spin echo T1-weighted sequences with fat saturation. The samples were placed into flasks and graphical analysis of the signal intensity was performed as a function of the paramagnetic contrast concentration.Results:As compared with samples of equal concentrations diluted only with saline, the authors have observed an average signal intensity decrease of 20.67% for iodinated contrast agent, and of 28.34% for xylocaine. However, the increased gadolinium concentration in the samples caused decrease in signal intensity with all the dilutions.Conclusion:Minimizing the use of iodinated contrast media and xylocaine and/or the use of a gadolinium concentration of 2.5 mmol/L diluted in saline will improve the sensitivity of magnetic resonance arthrography.


2012 ◽  
Vol 9 (4) ◽  
pp. 428-431 ◽  
Author(s):  
Tetsuya Ueba ◽  
Hiroshi Abe ◽  
Juntaro Matsumoto ◽  
Toshio Higashi ◽  
Tooru Inoue

A 19-month-old child was gradually suffering from gait disturbance and was referred by his pediatrician to the authors' institution. Spinal MRI showed Gd-enhanced spinal cord tumor and congestive myelopathy. Intraoperatively the lesion was seen to be a hemangioblastoma. Because discrimination of the arterialized draining veins from the feeding arteries was difficult, indocyanine green videography was conducted to differentiate them. Real-time evaluation by FLOW 800 revealed that the slope of the average signal intensity in the feeding artery was steeper than that of the arterialized veins. The tumor was successfully resected, and postoperative indocyanine green videography showed total removal of the tumor as a signal-negative region; the circulation time between the feeding artery and the main draining vein was prolonged from 2.5 to 5.5 seconds. Indocyanine green videography and real-time evaluation by FLOW 800 were objective and effective for the excision of a tumor retaining the arteriovenous shunt. The patient recovered from congestive myelopathy and gait disturbance.


Sign in / Sign up

Export Citation Format

Share Document