scholarly journals Olfactory Detection Thresholds for Primary Aliphatic Alcohols in Mice

2020 ◽  
Vol 45 (7) ◽  
pp. 513-521 ◽  
Author(s):  
Ellie Williams ◽  
Adam Dewan

Abstract Probing the neural mechanisms that underlie each sensory system requires the presentation of perceptually appropriate stimulus concentrations. This is particularly relevant in the olfactory system as additional odorant receptors typically respond with increasing stimulus concentrations. Thus, perceptual measures of olfactory sensitivity provide an important guide for functional experiments. This study focuses on aliphatic alcohols because they are commonly used to survey neural activity in a variety of olfactory regions, probe the behavioral limits of odor discrimination, and assess odor-structure activity relationships in mice. However, despite their frequent use, a systematic study of the relative sensitivity of these odorants in mice is not available. Thus, we assayed the ability of C57BL/6J mice to detect a homologous series of primary aliphatic alcohols (1-propanol to 1-heptanol) using a head-fixed Go/No-Go operant conditioning assay combined with highly reproducible stimulus delivery. To aid in the accessibility of our data, we report the animal’s threshold to each odorant according to the 1) ideal gas condition, 2) nonideal gas condition (factoring in the activity of the odorant in the solvent), and 3) the liquid dilution of the odorant in the olfactometer. Of the odorants tested, mice were most sensitive to 1-hexanol and least sensitive to 1-butanol. These updated measures of murine sensitivity will hopefully guide experimenters in choosing appropriate stimulus concentrations for experiments using these odorants.

PLoS ONE ◽  
2015 ◽  
Vol 10 (11) ◽  
pp. e0142488 ◽  
Author(s):  
Luma Issa Abdul-Kreem ◽  
Heiko Neumann

2002 ◽  
Vol 205 (11) ◽  
pp. 1633-1643 ◽  
Author(s):  
Matthias Laska ◽  
Alexandra Seibt

SUMMARY The view that primates are microsmatic animals is based mainly on an interpretation of neuroanatomical features, whereas physiological evidence of a poorly developed sense of smell in this order of mammals is largely lacking. Using a conditioning paradigm, we therefore assessed the olfactory sensitivity of three squirrel monkeys (Saimiri sciureus) and of four pigtail macaques (Macaca nemestrina) for a homologous series of aliphatic alcohols (ethanol to 1-octanol) and isomeric forms of some of these substances. In the majority of cases, the animals of both species significantly discriminated concentrations below 1 part per million from the odourless solvent, and with 1-hexanol individual monkeys even demonstrated thresholds below 10 parts per billion. The results showed (i) that both primate species have a well-developed olfactory sensitivity for aliphatic alcohols, which for the majority of substances matches or even is better than that of species such as the rat, (ii) that both species generally show very similar olfactory detection thresholds for aliphatic alcohols, and (iii) that a significant negative correlation between perceptibility in terms of olfactory detection threshold and carbon chain length of both the aliphatic 1-and 2-alcohols exists in both species. These findings support the idea that across-species comparisons of neuroanatomical features are a poor predictor of olfactory performance and that general labels such as `microsmat' or`macrosmat', which are usually based on allometric comparisons of olfactory brain structures, are inadequate to describe the olfactory capabilities of a species. Further, our findings suggest that olfaction may play an important and hitherto underestimated role in the regulation of behaviour in the species tested.


Author(s):  
Hadi Ghezel Sofloo ◽  
Alireza Shams ◽  
Reza Ebrahimi

This paper deals with simulation of transport phenomena in micro and nano pores. The number of cavities and the cavity radius were estimated by using Henry’s law for adsorption of Argon onto ZSM-5 and NaX zeolites. This work showed both of zeolites have pores with average size less than 1 nm. Then with using micro-nano channel assumption instead of micro-nano pores, gas flow and heat transfer were investigated. Subsonic nonideal gas flow and heat transfer for different Knudsen number are investigated numerically using the Direct Simulation Monte Carlo method modified with a consistent Boltzamnn algorithm. The collision rate is also modified based on the Enskog theory for dense gas. It is shown that nonideal gas effect becomes significant when the gas becomes so dense that the ideal gas assumption breaks down. The results also show that the nonideal gas effect is dependent not only on the gas density, but also the channel size. A higher gas density and a smaller channel size lead to a more significant nonideal gas effect. The nonideal gas effect also causes lower skin friction coefficients and different heat transfer flux distributions at the wall surface.


1979 ◽  
Vol 87 (6) ◽  
pp. 717-733 ◽  
Author(s):  
Allen H. Sherman ◽  
John E. Amoore ◽  
Vivian Weigel

Serial dilutions of pyridine in water are employed for measuring the olfactory detection thresholds of patients. Experimental precautions are described that improve the precision and accuracy of the method. Existing data on the sensitivities of hyposmic patients are confirmed, but the sensitivities of normal subjects and of hyperosmic patients are believed to have been substantially overestimated in some earlier publications. Routine clinical applications of the revised pyridine odor threshold test are discussed. In the authors' experience, the average cystic fibrosis patient is slightly hyposmic, and some cases of pituitary tumor are accompanied by a 100,000-fold hyperosmia.


2014 ◽  
Vol 151 (1_suppl) ◽  
pp. P116-P117
Author(s):  
Ayotunde J. Fasunla ◽  
David D. Douglas ◽  
Aderemi A. Adeosun ◽  
Silke Steinbach ◽  
Onyekwere G. Nwaorgu

2015 ◽  
Vol 53 ◽  
pp. 217-222 ◽  
Author(s):  
J.D. Woolley ◽  
O. Lam ◽  
B. Chuang ◽  
J.M. Ford ◽  
D.H. Mathalon ◽  
...  

2019 ◽  
Author(s):  
Douglas A. Storace ◽  
Lawrence B. Cohen

AbstractWhile humans and other animals exhibit adaptation to odorants, the neural mechanisms involved in this process are incompletely understood. One possibility is that it primarily occurs as a result of the interactions between odorants and odorant receptors expressed on the olfactory sensory neurons in the olfactory epithelium. In this scenario, adaptation would arise as a peripheral phenomenon transmitted into the brain. An alternative possibility is that adaptation occurs as a result of processing in the brain. Here we asked whether the olfactory bulb, the first stage of olfactory information processing in the brain, is involved in perceptual adaptation. Multicolor imaging was used to simultaneously measure the olfactory receptor nerve terminals (input) and mitral/tufted cell apical dendrites (output) that innervate the olfactory bulb glomerular layer. Repeated odor stimulation of the same concentration resulted in a decline in the output maps, while the input remained relatively stable. The results indicate that the mammalian olfactory bulb participates in olfactory adaptation.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9581
Author(s):  
Han Han ◽  
Zhuoying Liu ◽  
Fanming Meng ◽  
Yangshuai Jiang ◽  
Jifeng Cai

Background The time-length between the first colonization of necrophagous insect on the corpse and the beginning of investigation represents the most important forensic concept of minimum post-mortem inference (PMImin). Before colonization, the time spent by an insect to detect and locate a corpse could significantly influence the PMImin estimation. The olfactory system plays an important role in insect food foraging behavior. Proteins like odorant binding proteins (OBPs), chemosensory proteins (CSPs), odorant receptors (ORs), ionotropic receptors (IRs) and sensory neuron membrane proteins (SNMPs) represent the most important parts of this system. Exploration of the above genes and their necrophagous products should facilitate not only the understanding of their roles in forging but also their influence on the period before PMImin. Transcriptome sequencing has been wildly utilized to reveal the expression of particular genes under different temporal and spatial condition in a high throughput way. In this study, transcriptomic study was implemented on antennae of adult Aldrichina grahami (Aldrich) (Diptera: Calliphoridae), a necrophagous insect with forensic significance, to reveal the composition and expression feature of OBPs, CSPs, ORs, IRs and SNMPs genes at transcriptome level. Method Antennae transcriptome sequencing of A. grahami was performed using next-generation deep sequencing on the platform of BGISEQ-500. The raw data were deposited into NCBI (PRJNA513084). All the transcripts were functionally annotated using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Differentially expressed genes (DEGs) were analyzed between female and male antennae. The transcripts of OBPs, CSPs, ORs, IRs and SNMPs were identified based on sequence feature. Phylogenetic development of olfactory genes of A. grahami with other species was analyzed using MEGA 5.0. RT-qPCR was utilized to verify gene expression generated from the transcriptome sequencing. Results In total, 14,193 genes were annotated in the antennae transcriptome based on the GO and the KEGG databases. We found that 740 DEGs were differently expressed between female and male antennae. Among those, 195 transcripts were annotated as candidate olfactory genes then checked by sequence feature. Of these, 27 OBPs, one CSPs, 49 ORs, six IRs and two SNMPs were finally identified in antennae of A. grahami. Phylogenetic development suggested that some olfactory genes may play a role in food forging, perception of pheromone and decomposing odors. Conclusion Overall, our results suggest the existence of gender and spatial expression differences in olfactory genes from antennae of A. grahami. Such differences are likely to greatly influence insect behavior around a corpse. In addition, candidate olfactory genes with predicted function provide valuable information for further studies of the molecular mechanisms of olfactory detection of forensically important fly species and thus deepen our understanding of the period before PMImin.


Perception ◽  
2016 ◽  
Vol 46 (3-4) ◽  
pp. 333-342 ◽  
Author(s):  
Amir Sarrafchi ◽  
Matthias Laska

Using a conditioning paradigm and an automated olfactometer, we investigated the olfactory sensitivity of CD-1 mice for the mammalian blood odor component trans-4,5-epoxy-(E)-2-decenal. We found that two of the animals significantly discriminated concentrations down to 3.0 ppt (parts per trillion) from the solvent, and three animals even successfully detected dilutions as low as 0.3 ppt. Intraspecific comparisons between the olfactory detection thresholds obtained here with those obtained in earlier studies with other odorants show that mice are extraordinarily sensitive to this blood odor component. Interspecific comparisons of olfactory detection thresholds show that human subjects are even more sensitive to trans-4,5-epoxy-(E)-2-decenal than the mice tested here. Both intra- and inter-specific comparisons suggest that neither neuroanatomical properties such as the size of the olfactory epithelium, the total number of olfactory receptor neurons, or the size of olfactory brain structures, nor genetic properties such as the number of functional olfactory receptor genes or the proportion of functional relative to the total number of olfactory receptor genes allow us to reliably predict a species’ olfactory sensitivity. In contrast, the results support the notion that the behavioral relevance of an odorant rather than neuroanatomical or genetic properties may determine a species’ olfactory sensitivity.


Sign in / Sign up

Export Citation Format

Share Document