Clinical Impact of Rapid Species Identification From Positive Blood Cultures With Same-day Phenotypic Antimicrobial Susceptibility Testing on the Management and Outcome of Bloodstream Infections

Author(s):  
Kathrin Ehren ◽  
Arne Meißner ◽  
Nathalie Jazmati ◽  
Julia Wille ◽  
Norma Jung ◽  
...  

Abstract Background Timely availability of microbiological results from positive blood cultures is essential to enable early pathogen-directed therapy. The Accelerate Pheno system (ADX) is a novel technology using fluorescence in situ hybridization for rapid species identification (ID) and morphokinetic bacterial analysis for phenotypic antimicrobial susceptibility testing (AST), with promising results. Yet the impact of this technology on clinical management and patient outcome remains unclear. Methods We conducted a quasiexperimental before-and-after observational study and analyzed 3 groups with different diagnostic and therapeutic pathways following recent integration of ADX: conventional microbiological diagnostics with and without antimicrobial stewardship program (ASP) intervention, and rapid diagnostics (ADX in addition to conventional standard) with ASP intervention. Primary endpoints were time to adequate, to optimal and to step-down antimicrobial therapy. Secondary endpoints were antimicrobial consumption, in-hospital mortality, length of stay (LOS), and the incidence of Clostridioidesdifficile infection (CDI). Results Two hundred four patients (conventional diagnostics, n = 64; conventional diagnostics + ASP, n = 68; rapid diagnostics + ASP; n = 72) were evaluated. The use of ADX significantly decreased time from Gram stain to ID (median, 23 vs 2.2 hours, P < .001) and AST (median, 23 vs 7.4 hours, P < .001), from Gram stain to optimal therapy (median, 11 vs 7 hours, P = .024) and to step-down antimicrobial therapy (median, 27.8 vs 12 hours, P = .019). However, groups did not differ in antimicrobial consumption, duration of antimicrobial therapy, mortality, LOS, or incidence of CDI. Conclusions Use of ADX significantly reduced time to ID and AST as well as time to optimal antimicrobial therapy but did not affect antimicrobial consumption and clinical outcome.

2020 ◽  
Vol 75 (11) ◽  
pp. 3218-3229
Author(s):  
Stefano Mancini ◽  
Elias Bodendoerfer ◽  
Natalia Kolensnik-Goldmann ◽  
Sebastian Herren ◽  
Kim Röthlin ◽  
...  

Abstract Background Rapid antimicrobial susceptibility testing (RAST) of bacteria causing bloodstream infections is critical for implementation of appropriate antibiotic regimens. Objectives We have established a procedure to prepare standardized bacterial inocula for Enterobacterales-containing clinical blood cultures and assessed antimicrobial susceptibility testing (AST) data generated with the WASPLabTM automated reading system. Methods A total of 258 blood cultures containing Enterobacterales were examined. Bacteria were enumerated by flow cytometry using the UF-4000 system and adjusted to an inoculum of 106 cfu/mL. Disc diffusion plates were automatically streaked, incubated for 6, 8 and 18 h and imaged using the fully automated WASPLabTM system. Growth inhibition zones were compared with those obtained with inocula prepared from primary subcultures following the EUCAST standard method. Due to time-dependent variations of the inhibition zone diameters, early AST readings were interpreted using time-adjusted tentative breakpoints and areas of technical uncertainty. Results and conclusions Inhibition zones obtained after 18 h incubation using an inoculum of 106 cfu/mL prepared directly from blood cultures were highly concordant with those of the EUCAST standard method based on primary subcultures, with categorical agreement (CA) of 95.8%. After 6 and 8 h incubation, 89.5% and 93.0% of the isolates produced interpretable results, respectively, with CA of &gt;98.5% and very low numbers of clinical categorization errors for both the 6 h and 8 h readings. Overall, with the standardized and automated RAST method, consistent AST data from blood cultures containing Enterobacterales can be generated after 6–8 h of incubation and subsequently confirmed by standard reading of the same plate after 18 h.


2019 ◽  
Vol 71 (10) ◽  
pp. 2553-2560 ◽  
Author(s):  
Matthew J Ellington ◽  
Frances Davies ◽  
Elita Jauneikaite ◽  
Katie L Hopkins ◽  
Jane F Turton ◽  
...  

Abstract Background Early and accurate treatment of infections due to carbapenem-resistant organisms is facilitated by rapid diagnostics, but rare resistance mechanisms can compromise detection. One year after a Guiana Extended-Spectrum (GES)-5 carbapenemase–positive Klebsiella oxytoca infection was identified by whole-genome sequencing (WGS; later found to be part of a cluster of 3 cases), a cluster of 11 patients with GES-5–positive K. oxytoca was identified over 18 weeks in the same hospital. Methods Bacteria were identified by matrix-assisted laser desorption/ionization–time of flight mass spectrometry, antimicrobial susceptibility testing followed European Committee on Antimicrobial Susceptibility Testing guidelines. Ertapenem-resistant isolates were referred to Public Health England for characterization using polymerase chain reaction (PCR) detection of GES, pulsed-field gel electrophoresis (PFGE), and WGS for the second cluster. Results The identification of the first GES-5 K. oxytoca isolate was delayed, being identified by WGS. Implementation of a GES-gene PCR informed the occurrence of the second cluster in real time. In contrast to PFGE, WGS phylogenetic analysis refuted an epidemiological link between the 2 clusters; it also suggested a cascade of patient-to-patient transmission in the later cluster. A novel GES-5–encoding plasmid was present in K. oxytoca, Escherichia coli, and Enterobacter cloacae isolates from unlinked patients within the same hospital group and in human and wastewater isolates from 3 hospitals elsewhere in the United Kingdom. Conclusions Genomic sequencing revolutionized the epidemiological understanding of the clusters; it also underlined the risk of covert plasmid propagation in healthcare settings and revealed the national distribution of the resistance-encoding plasmid. Sequencing results also informed and led to the ongoing use of enhanced diagnostic tests for detecting carbapenemases locally and nationally.


2017 ◽  
Vol 55 (7) ◽  
pp. 2116-2126 ◽  
Author(s):  
Matthias Marschal ◽  
Johanna Bachmaier ◽  
Ingo Autenrieth ◽  
Philipp Oberhettinger ◽  
Matthias Willmann ◽  
...  

ABSTRACT Bloodstream infections (BSI) are an important cause of morbidity and mortality. Increasing rates of antimicrobial-resistant pathogens limit treatment options, prompting an empirical use of broad-range antibiotics. Fast and reliable diagnostic tools are needed to provide adequate therapy in a timely manner and to enable a de-escalation of treatment. The Accelerate Pheno system (Accelerate Diagnostics, USA) is a fully automated test system that performs both identification and antimicrobial susceptibility testing (AST) directly from positive blood cultures within approximately 7 h. In total, 115 episodes of BSI with Gram-negative bacteria were included in our study and compared to conventional culture-based methods. The Accelerate Pheno system correctly identified 88.7% (102 of 115) of all BSI episodes and 97.1% (102 of 105) of isolates that are covered by the system's identification panel. The Accelerate Pheno system generated an AST result for 91.3% (95 of 104) samples in which the Accelerate Pheno system identified a Gram-negative pathogen. The overall category agreement between the Accelerate Pheno system and culture-based AST was 96.4%, the rates for minor discrepancies 1.4%, major discrepancies 2.3%, and very major discrepancies 1.0%. Of note, ceftriaxone, piperacillin-tazobactam, and carbapenem resistance was correctly detected in blood culture specimens with extended-spectrum beta-lactamase-producing Escherichia coli ( n = 7) and multidrug-resistant Pseudomonas aeruginosa ( n = 3) strains. The utilization of the Accelerate Pheno system reduced the time to result for identification by 27.49 h ( P < 0.0001) and for AST by 40.39 h ( P < 0.0001) compared to culture-based methods in our laboratory setting. In conclusion, the Accelerate Pheno system provided fast, reliable results while significantly improving turnaround time in blood culture diagnostics of Gram-negative BSI.


Sign in / Sign up

Export Citation Format

Share Document