scholarly journals P604Cardiac effects of exhaustive exercise induced oxidative stress in a rat model

2014 ◽  
Vol 103 (suppl 1) ◽  
pp. S109.2-S109
Author(s):  
A Olah ◽  
BT Nemeth ◽  
C Matyas ◽  
L Hidi ◽  
E Birtalan ◽  
...  
2011 ◽  
Vol 668 (3) ◽  
pp. 407-413 ◽  
Author(s):  
Elif Şıktar ◽  
Deniz Ekinci ◽  
Erdinç Şıktar ◽  
Şükrü Beydemir ◽  
İlhami Gülçin ◽  
...  

2007 ◽  
Vol 2 (1) ◽  
pp. 56-70 ◽  
Author(s):  
Antoni Sureda ◽  
Pedro Tauler ◽  
Antoni Aguiló ◽  
Nuria Cases ◽  
Isabel Llompart ◽  
...  

AbstractIntense exercise induces inflammatory-like changes and oxidative stress in immune cells. Our aim was to study the effects of antioxidant diet supplementation on the neutrophil inflammatory response and on the tocopherol associated protein (TAP) expression after exhaustive exercise. Fourteen male-trained amateur runners were randomly divided in two placebo and supplemented groups. Vitamins C (152 mg/d) and E (50 mg/d) supplementation were administrated to the athletes for a month, using an almond based isotonic and energetic beverage. Non-enriched beverage was given to the placebo group. After one month, the subjects participated in a half-marathon race (21 km-run). Neutrophil TAP mRNA expression and markers of the inflammatory response were determined before, immediately after, and 3 h after finishing the half-marathon race. TAP expression increased after exercise mainly in the neutrophils of the placebo group. Exercise induced an inflammatory response in both placebo and supplemented groups, manifested with neutrophilia, increased creatine kinase and lactate dehydrogenase serum activities, neutrophil luminol chemiluminescence and myeloperoxidase release. Plasma malondialdehyde only increased in the placebo group after exercise. Diet supplementation with moderate levels of antioxidant vitamins avoids plasma damage in response to exhaustive exercise without the effects on the inflammatory process. Neutrophil degranulation and increased tocopherol associated protein could contribute to the neutrophil protection from the oxidative stress.


2008 ◽  
Vol 104 (4) ◽  
pp. 1063-1068 ◽  
Author(s):  
Günnur Koçer ◽  
Ümit Kemal Şentürk ◽  
Oktay Kuru ◽  
Filiz Gündüz

Exercise-induced proteinuria is a common consequence of physical activity and is caused predominantly by alterations in renal hemodynamics. Although it has been shown that exercise-induced oxidative stress can also contribute to the occurrence of postexercise proteinuria, the sources of reactive oxygen species that promote it are unknown. We investigated the enzymes nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and xanthine oxidase (XO) as possible sources of oxidative stress in postexercise proteinuria. First, we evaluated the effect of blocking the NADPH oxidase enzyme on postexercise proteinuria. We found a significant increase in urinary protein level, kidney thiobarbituric acid-reactive substances (TBARS), and protein carbonyl content after exhaustive exercise, and NADPH oxidase activity was induced by exercise. Rats that were treated with an NADPH oxidase inhibitor for 4 days before exhaustive exercise showed no increase in kidney TBARS or protein carbonyl derivative level and no proteinuria or NADPH oxidase activation. In the next set of experiments, we investigated the effect of XO blockage on postexercise proteinuria. Oxypurinol, an XO inhibitor was administered to rats for 3 days before exercise. Although XO inhibition significantly decreased kidney TBARS levels and protein carbonyl content in exercised rats, the inhibition did not prevent exercise-induced proteinuria. However, plasma and kidney XO activity was not induced by exercise, but rather it was suppressed under oxypurinol treatment. These results suggest that increased NADPH oxidase activity induced by exhaustive exercise is an important source of elevated oxidative, stress during exercise, which contributes to the occurrence of postexercise proteinuria.


Antioxidants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 401 ◽  
Author(s):  
Katsuhiko Suzuki ◽  
Takaki Tominaga ◽  
Ruheea Taskin Ruhee ◽  
Sihui Ma

Exhaustive exercise induces systemic inflammatory responses, which are associated with exercise-induced tissue/organ damage, but the sources and triggers are not fully understood. Herein, the basics of inflammatory mediator cytokines and research findings on the effects of exercise on systemic inflammation are introduced. Subsequently, the association between inflammatory responses and tissue damage is examined in exercised and overloaded skeletal muscle and other internal organs. Furthermore, an overview of the interactions between oxidative stress and inflammatory mediator cytokines is provided. Particularly, the transcriptional regulation of redox signaling and pro-inflammatory cytokines is described, as the activation of the master regulatory factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is involved directly or indirectly in controlling pro-inflammatory genes and antioxidant enzymes expression, whilst nuclear factor-kappa B (NF-κB) regulates the pro-inflammatory gene expression. Additionally, preventive countermeasures against the pathogenesis along with the possibility of interventions such as direct and indirect antioxidants and anti-inflammatory agents are described. The aim of this review is to give an overview of studies on the systematic inflammatory responses to exercise, including our own group as well as others. Moreover, the challenges and future directions in understanding the role of exercise and functional foods in relation to inflammation and oxidative stress are discussed.


2012 ◽  
Vol 113 (07) ◽  
pp. 393-399 ◽  
Author(s):  
N. Okudan ◽  
S. Revan ◽  
S. S. Balci ◽  
M. Belviranli ◽  
H. Pepe ◽  
...  

Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 866
Author(s):  
Takaki Tominaga ◽  
Tsukasa Ikemura ◽  
Koichi Yada ◽  
Kazue Kanda ◽  
Kaoru Sugama ◽  
...  

Strenuous exercise induces organ damage, inflammation and oxidative stress. To prevent exercise-induced organ damage, inflammation and oxidative stress, rehydrating may be an effective strategy. In the present study, we aimed to examine whether beverage intake after exhaustive exercise to recover from dehydration prevents such disorders. Thirteen male volunteers performed incremental cycling exercise until exhaustion. Immediately after exercise, the subjects drank an electrolyte containing water (rehydrate trial: REH) or did not drink any beverage (control trial: CON). Blood samples were collected before (Pre), immediately (Post), 1 h and 2 h after exercise. Urine samples were also collected before (Pre) and 2 h after exercise. We measured biomarkers of organ damage, inflammation and oxidative stress in blood and urine. Biomarkers of muscle, renal and intestinal damage and inflammation increased in the blood and urine after exercise. However, changes in biomarkers of organ damage and inflammation did not differ between trials (p > 0.05). The biomarker of oxidative stress, thiobarbituric acid reactive substances (TBARS), in plasma, showed different changes between trials (p = 0.027). One hour after exercise, plasma TBARS concentration in REH had a higher trend than that in CON (p = 0.052), but there were no significant differences between Pre and the other time points in each trial. These results suggest that beverage intake after exercise does not attenuate exercise-induced organ damage, inflammation or oxidative stress in healthy males. However, rehydration restores exercise-induced oxidative stress more quickly.


Sign in / Sign up

Export Citation Format

Share Document