scholarly journals Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction

2014 ◽  
Vol 103 (4) ◽  
pp. 530-541 ◽  
Author(s):  
L. Barile ◽  
V. Lionetti ◽  
E. Cervio ◽  
M. Matteucci ◽  
M. Gherghiceanu ◽  
...  
2010 ◽  
Vol 49 (6) ◽  
pp. 972-983 ◽  
Author(s):  
Masakuni Tokunaga ◽  
Mei-Lan Liu ◽  
Toshio Nagai ◽  
Koji Iwanaga ◽  
Katsuhisa Matsuura ◽  
...  

2018 ◽  
Vol 27 (8) ◽  
pp. 967-975 ◽  
Author(s):  
Thi Y.L. Le ◽  
Masahito Ogawa ◽  
Eddy Kizana ◽  
Jenny E. Gunton ◽  
James J.H. Chong

2021 ◽  
Vol 22 (3) ◽  
pp. 1390
Author(s):  
Julia Mester-Tonczar ◽  
Patrick Einzinger ◽  
Johannes Winkler ◽  
Nina Kastner ◽  
Andreas Spannbauer ◽  
...  

Circular RNAs (circRNAs) are crucial in gene regulatory networks and disease development, yet circRNA expression in myocardial infarction (MI) is poorly understood. Here, we harvested myocardium samples from domestic pigs 3 days after closed-chest reperfused MI or sham surgery. Cardiac circRNAs were identified by RNA-sequencing of rRNA-depleted RNA from infarcted and healthy myocardium tissue samples. Bioinformatics analysis was performed using the CIRIfull and KNIFE algorithms, and circRNAs identified with both algorithms were subjected to differential expression (DE) analysis and validation by qPCR. Circ-RCAN2 and circ-C12orf29 expressions were significantly downregulated in infarcted tissue compared to healthy pig heart. Sanger sequencing was performed to identify the backsplice junctions of circular transcripts. Finally, we compared the expressions of circ-C12orf29 and circ-RCAN2 between porcine cardiac progenitor cells (pCPCs) that were incubated in a hypoxia chamber for different time periods versus normoxic pCPCs. Circ-C12orf29 did not show significant DE in vitro, whereas circ-RCAN2 exhibited significant ischemia-time-dependent upregulation in hypoxic pCPCs. Overall, our results revealed novel cardiac circRNAs with DE patterns in pCPCs, and in infarcted and healthy myocardium. Circ-RCAN2 exhibited differential regulation by myocardial infarction in vivo and by hypoxia in vitro. These results will improve our understanding of circRNA regulation during acute MI.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Archana V Boopathy ◽  
Pao L Che ◽  
Yoshie Narui ◽  
Khalid Salaita ◽  
Michael E Davis

Rationale: Cardiac progenitor cells (CPCs) are multipotent, self-renewing cells that can regenerate the myocardium and improve cardiac function in animal models of myocardial infarction (MI). However, limited survival of stem/progenitor cells inhibits cardiac regeneration. Force dependent Notch activation promotes cardiac development and cardiac gene expression in many adult stem cells. As dysregulation of Notch signaling leads to embryonic lethal cardiovascular defects, activating this critical pathway during cell transplantation could improve efficacy of stem cell therapy. Objective: Investigate i) whether self-assembling peptide scaffolds can be used to activate Notch1 signaling in CPCs to promote cardiogenic differentiation and ii) the effect of scaffold stiffness on Notch1 activation and differentiation. Methods: Rat CPCs (c-kit + ) were cultured for 48h in 3D self-assembling scaffolds of varying stiffness (1% low, 2% high): empty scaffolds (RADA), scaffolds modified with peptide mimicking Notch1 ligand, Jagged1 (RJAG), or scaffolds modified with a scrambled peptide (RSCR) and cardiogenic gene expression measured by qRT-PCR. CHO cells expressing Notch1 responsive YFP were also cultured in the above scaffolds for 48h and YFP expression was determined. Results are mean ± SEM with p<0.05 considered significant by one or two-way ANOVA with appropriate post test. Results: In the Notch1 reporter cells, Notch1 activation increased significantly in presence of RJAG (p<0.01) and on increasing scaffold stiffness (p<0.01,n=6) indicating scaffold stiffness-dependent Notch1 activation. Culture of CPCs in RJAG containing 1% scaffolds (low stiffness) significantly increased early endothelial and smooth muscle but not cardiac gene expression while in 2% scaffolds (high stiffness) significantly increased only cardiac and not endothelial or smooth muscle gene expression (p<0.05, n≥4). Conclusions: Taken together, these data show that i) Notch1 activation in 3D is dependent on ligand density and scaffold stiffness and ii) stiffness dependent Notch1 activation differentially regulates cardiogenic gene expression in CPCs. Therefore, delivery of CPCs in JAG containing scaffolds could be used to improve cardiac function following MI.


Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2571
Author(s):  
Cristina Prat-Vidal ◽  
Verónica Crisóstomo ◽  
Isabel Moscoso ◽  
Claudia Báez-Díaz ◽  
Virginia Blanco-Blázquez ◽  
...  

Human cardiac progenitor cells (hCPC) are considered a good candidate in cell therapy for ischemic heart disease, demonstrating capacity to improve functional recovery after myocardial infarction (MI), both in small and large preclinical animal models. However, improvements are required in terms of cell engraftment and efficacy. Based on previously published reports, insulin-growth factor 1 (IGF-1) and hepatocyte growth factor (HGF) have demonstrated substantial cardioprotective, repair and regeneration activities, so they are good candidates to be evaluated in large animal model of MI. We have validated porcine cardiac progenitor cells (pCPC) and lentiviral vectors to overexpress IGF-1 (co-expressing eGFP) and HGF (co-expressing mCherry). pCPC were transduced and IGF1-eGFPpos and HGF-mCherrypos populations were purified by cell sorting and further expanded. Overexpression of IGF-1 has a limited impact on pCPC expression profile, whereas results indicated that pCPC-HGF-mCherry cultures could be counter selecting high expresser cells. In addition, pCPC-IGF1-eGFP showed a higher cardiogenic response, evaluated in co-cultures with decellularized extracellular matrix, compared with native pCPC or pCPC-HGF-mCherry. In vivo intracoronary co-administration of pCPC-IGF1-eGFP and pCPC-HFG-mCherry (1:1; 40 × 106/animal), one week after the induction of an MI model in swine, revealed no significant improvement in cardiac function.


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
David Q Trac ◽  
Chunhui Xu ◽  
Michael E. Davis

Congenital heart disease is rarely cured by surgery and can lead to life-threatening, intractable right ventricular heart failure (HF). In particular, children with hypoplastic left heart syndrome have a 10 year transplant-free survival rate of 50-75% despite palliative surgical repair. Currently, no effective stem-cell based treatments are available for pediatric HF. Recent stem-cell based clinical trials have been limited by poor differentiation rates and low cell retention. Additionally, we have shown that human cardiac progenitor cells (hCPCs) have reduced regenerative potential as they age, starting as early as 1 year old. We propose the aggregation of CPCs into scaffold-free spheres to improve the differentiation of child CPCs into mature cardiac phenotypes by enhancing intercellular Notch signaling. Notch signaling activity has been implicated in the regulation of CPC fate decisions and prior research in our lab has shown that intramyocardial delivery of Notch-ligand containing hydrogels improves cardiac function. Child CPC spheres were produced at a size of 1500 cells per sphere using a microwell array and cultured in suspension. Using immunohistochemistry, we showed that aggregation of CPCs increased Notch1 expression compared to parallel monolayer cultures. This effect is not limited to CPCs and was recapitulated in spheres of Chinese hamster ovarian cells transfected with Notch1-YFP. Additionally, Notch signaling pathway gene array data showed increased expression of the Notch-cleaving metalloprotease ADAM10 (3.6-fold) and Notch ligand DLL1 (25.0-fold) in CPC spheres by 3 days in culture compared to monolayer cultures. By 14 days in culture, we showed that aggregation of CPCs robustly increases the expression of the GATA4, a cardiac transcription factor associated with angiogenesis, and VEGFR1, an early marker of endothelial lineage commitment. Based on our results, we hypothesize that aggregation of CPCs into spheroids increases endothelial differentiation via a Notch-dependent mechanism. Transplantation of CPC spheres may improve cardiac function in vivo compared to transplantation of single CPCs. The results from our project will facilitate the development of autologous stem-cell based therapies for pediatric HF.


Sign in / Sign up

Export Citation Format

Share Document