scholarly journals P92Reduced myofilament calcium-sensitivity in diabetic human left ventricular cardiomyocytes

2018 ◽  
Vol 114 (suppl_1) ◽  
pp. S24-S24
Author(s):  
J C Baldi ◽  
G T Wilkins ◽  
R R Lamberts ◽  
G M Diffee
2012 ◽  
Vol 21 (4) ◽  
pp. 346-354 ◽  
Author(s):  
Carina Gruber ◽  
Karin Kohlstedt ◽  
Annemarieke E. Loot ◽  
Ingrid Fleming ◽  
Wolfgang Kummer ◽  
...  

2007 ◽  
Vol 42 (6) ◽  
pp. S46
Author(s):  
Judit Barta ◽  
Jolanda van der Velden ◽  
Nicky M. Boontje ◽  
Ruud Zaremba ◽  
Ger J.M. Stienen

2010 ◽  
Vol 98 (3) ◽  
pp. 518a
Author(s):  
Krista N. Blackwell ◽  
Dennis J. Rozanski ◽  
Dominique C. Renard-Rooney ◽  
Andrew P. Thomas

2007 ◽  
Vol 293 (4) ◽  
pp. H2367-H2376 ◽  
Author(s):  
Jon Arne Kro Birkeland ◽  
Fredrik Swift ◽  
Nils Tovsrud ◽  
Ulla Enger ◽  
Per Kristian Lunde ◽  
...  

Rats with congestive heart failure (CHF) develop ventricular inotropic responsiveness to serotonin (5-HT), mediated through 5-HT2A and 5-HT4 receptors. Human ventricle is similarly responsive to 5-HT through 5-HT4 receptors. We studied isolated ventricular cardiomyocytes to clarify the effects of 5-HT on intracellular Ca2+ handling. Left-ventricular cardiomyocytes were isolated from male Wistar rats 6 wk after induction of postinfarction CHF. Contractile function and Ca2+ transients were measured in field-stimulated cardiomyocytes, and L-type Ca2+ current ( ICa,L) and sarcoplasmic reticulum (SR) Ca2+ content were measured in voltage-clamped cells. Protein phosphorylation was measured by Western blotting or phosphoprotein gel staining. 5-HT4- and 5-HT2A-receptor stimulation induced a positive inotropic response of 33 and 18% (both P < 0.05) and also increased the Ca2+ transient (44 and 6%, respectively; both P < 0.05). ICa,L and SR Ca2+ content increased only after 5-HT4-receptor stimulation (57 and 65%; both P < 0.05). Phospholamban serine16 (PLB-Ser16) and troponin I phosphorylation increased by 26 and 13% after 5-HT4-receptor stimulation ( P < 0.05). 5-HT2A-receptor stimulation increased the action potential duration and did not significantly change the phosphorylation of PLB-Ser16 or troponin I, but it increased myosin light chain 2 (MLC2) phosphorylation. In conclusion, the positive inotropic response to 5-HT4 stimulation results from increased ICa,L and increased phosphorylation of PLB-Ser16, which increases the SR Ca2+ content. 5-HT4 stimulation is thus, like β-adrenoceptor stimulation, possibly energetically unfavorable in CHF. 5-HT2A-receptor stimulation, previously studied in acute CHF, induces a positive inotropic response also in chronic CHF, probably mediated by MLC2 phosphorylation.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Nathan Palpant ◽  
Sharlene Day ◽  
Kimber Converso ◽  
Joseph Metzger

Contractile dysfunction associated with ischemia is a significant cause of morbidity and mortality particularly in the elderly. Strategies designed to protect the aged heart from ischemia-mediated pump failure are needed. We have generated transgenic (Tg) mice expressing a modified form of adult cardiac troponin I, the Ca ++ -activated molecular switch of the myofilament. Consonant with the fetal isoform, this transgene encodes a histidine substitution (A164H) in the critical switch domain of TnI thus increasing myofilament calcium sensitivity in a pH-dependent manner. We hypothesized that aged mice (24 months), intrinsically susceptible to myocardial dysfunction, would retain improved cardiac contractility at baseline and during an acute hypoxic challenge by means of myofilament-mediated calcium sensitization. Methods/Results: At baseline, by echocardiography, Tg hearts had increased systolic function, with a 26% higher mean ejection fraction compared to nontransgenic (Ntg) mice: 75 ± 3% [Tg: n = 13] vs. 63 ± 4% [Ntg: n = 12], P < 0.05, with no differences in diastolic function between the groups. To study the effects of acute hypoxia on cardiac hemodynamics mice underwent microconductance Millar catheterization while ventilated with 12% oxygen. Aged Tg mice had improved survival compared to Ntg mice: time to pump failure (65% of baseline peak systolic pressure) 11.59 ± 1.25 min. [Tg: n = 3] vs. 4.11 ± 1.90 min. [Ntg: n = 3], P < 0.05. After four minutes of hypoxia, Tg mice had markedly improved cardiac contractility compared to Ntg mice with increased stroke volume (30.05 ± 4.49 uL [Tg] vs. 13.23 ± 3.21 uL [Ntg], P < 0.05), end systolic pressure (106.09 ± 11.81 mmHg [Tg] vs. 64.49 ± 4.05 mmHg [Ntg], P < 0.05) and rate of positive left ventricular pressure development (12958.66 ± 2544.68 mmHg/sec [Tg] vs. 5717.00 ± 745.67 mmHg/sec [Ntg], P = 0.05). Conclusion: An alteration in myofilament calcium sensitivity via a pH-responsive histidine button in cardiac troponin I augments baseline heart function in Tg mice over their lifetime. During acute hypoxia, cTnI A164H improves survival in aged mice by maintaining cardiac contractility, and thus holds promise for the design of gene therapeutics to treat pump failure associated with acute ischemic events in the elderly.


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Prince Jeyabal ◽  
Rajarajan A Thandavarayan ◽  
Darukeshwara Joladarashi ◽  
Sahana Suresh Babu ◽  
Shashirekha Krishnamurthy ◽  
...  

Diabetic cardiomyopathy is a common complication in patients with diabetes and is associated with underlying chronic inflammation and cardiac cell death, subsequently leading to left ventricular dysfunction and heart failure. ELAV-like protein 1 (ELAVL1, mRNA stabilizing protein) and NLRP3 activation (inflammasome complex protein)-mediated IL-1beta synthesis play a critical role in the progression of heart failure. However, ELAVL1 regulation of pyroptosis (caspase-1-mediated programmed apoptosis) and associated IL-1beta release in cardiomyocytes, especially under diabetic condition, remains elusive. Human diabetic, non-diabetic heart tissues, human ventricular cardiomyocytes and rat cardiomyoblasts exposed to high glucose (HG) were used for our studies. Our data demonstrates that human ventricular cardiomyocytes exposed to high glucose condition showed significant increase in ELAVL1 and NLRP3 expression with a concomitant increase in caspase-1 and IL-1 beta expression. Furthermore, human cardiac tissue from diabetic patients showed increased ELAVL1, caspase-1 and NLRP3 expression as compared to non-diabetic hearts. Intriguingly, ELAVL1 knockdown abrogates TNF-α induced canonical pyroptosis via NLRP3, caspase-1 and IL-1beta suppression. Interestingly, miRNA-9 expression significantly reduces in high glucose treated cardiomyocytes and in human diabetic hearts. Bioinformatics analysis and target validation assays showed that miR-9 directly targets ELAVL1. Inhibition of miR-9 up regulates ELAVL1 expression and activates caspase-1. Alternatively, miR-9 mimics attenuate hyperglycemia-induced ELAVL1 and inhibit cardiomyocyte pyroptosis. To our knowledge, this is the first report to demonstrate the role of miR-9/ELAVL1 in hyperglycemia-induced cardiac pyroptosis. Taken together our study highlights the potential therapeutic implications in preventing cardiomyocyte cell loss in human diabetic failing heart.


Author(s):  
Eduard Jirkovský ◽  
Anna Jirkovská ◽  
Hana Bavlovič-Piskáčková ◽  
Veronika Skalická ◽  
Zuzana Pokorná ◽  
...  

Background: Anthracycline-induced heart failure has been traditionally attributed to direct iron-catalyzed oxidative damage. Dexrazoxane (DEX)—the only drug approved for its prevention—has been believed to protect the heart via its iron-chelating metabolite ADR-925. However, direct evidence is lacking, and recently proposed TOP2B (topoisomerase II beta) hypothesis challenged the original concept. Methods: Pharmacokinetically guided study of the cardioprotective effects of clinically used DEX and its chelating metabolite ADR-925 (administered exogenously) was performed together with mechanistic experiments. The cardiotoxicity was induced by daunorubicin in neonatal ventricular cardiomyocytes in vitro and in a chronic rabbit model in vivo (n=50). Results: Intracellular concentrations of ADR-925 in neonatal ventricular cardiomyocytes and rabbit hearts after treatment with exogenous ADR-925 were similar or exceeded those observed after treatment with the parent DEX. However, ADR-925 did not protect neonatal ventricular cardiomyocytes against anthracycline toxicity, whereas DEX exhibited significant protective effects (10–100 µmol/L; P <0.001). Unlike DEX, ADR-925 also had no significant impact on daunorubicin-induced mortality, blood congestion, and biochemical and functional markers of cardiac dysfunction in vivo (eg, end point left ventricular fractional shortening was 32.3±14.7%, 33.5±4.8%, 42.7±1.0%, and 41.5±1.1% for the daunorubicin, ADR-925 [120 mg/kg]+daunorubicin, DEX [60 mg/kg]+daunorubicin, and control groups, respectively; P <0.05). DEX, but not ADR-925, inhibited and depleted TOP2B and prevented daunorubicin-induced genotoxic damage. TOP2B dependency of the cardioprotective effects was probed and supported by experiments with diastereomers of a new DEX derivative. Conclusions: This study strongly supports a new mechanistic paradigm that attributes clinically effective cardioprotection against anthracycline cardiotoxicity to interactions with TOP2B but not metal chelation and protection against direct oxidative damage.


Sign in / Sign up

Export Citation Format

Share Document