scholarly journals Familiarity with a female does not affect a male’s courtship intensity in garter snakes Thamnophis sirtalis parietalis

2012 ◽  
Vol 58 (6) ◽  
pp. 805-811 ◽  
Author(s):  
Richard Shine ◽  
Jonathan K. Webb ◽  
Amanda Lane ◽  
Robert T. Mason

Abstract In many animal species, males direct more intense courtship towards females they have not previously encountered, than towards females with which they have previously mated. To test the factors responsible for this “Coolidge Effect”, we need studies on a wide range of taxa – including those with mating systems in which we would not expect (based on current theory) that such an effect would be evident. The Coolidge Effect has been documented in several lizard species, but has not been looked for (and would not be expected) in snakes. We conducted experimental trials with red-sided garter snakes Thamnophis sirtalis pa-rietalis at a communal den in Manitoba, to see whether previous exposure to a female (either courting, or courting plus mating) modified male mate choice or courtship intensity. In keeping with prediction from theory (but contrary to an early anecdotal report), male garter snakes did not modify their courtship behaviour based upon their familiarity (or lack thereof) with a specific female. At least in large courting aggregations, male snakes may maximize their fitness by basing mate-choice upon immediate attributes of the female (body size, condition, mated status) and the intensity of competition (numbers and sizes of rival males) rather than information derived from previous sexual encounters.

Author(s):  
Susan Thomas ◽  
Tim Ameel

An experimental investigation of water flow in a T-shaped channel with rectangular cross section (20 × 20 mm inlet ID and 20 × 40 mm outlet ID) has been conducted for a Reynolds number Re range of 56 to 422, based on inlet diameter. Dynamical conditions and the T-channel geometry of the current study are applicable to the microscale. This study supports a large body of numerical work, and resolution and the interrogation region are extended beyond previous experimental studies. Laser induced fluorescence (LIF) and particle imaging velocimetry (PIV) are used to characterize flow behaviors over the broad range of Re where realistic T-channels operate. Scalar structures previously unresolved in the literature are presented. Special attention is paid to the unsteady flow regimes that develop at moderate Re, which significantly impact mixing but are not yet well characterized or understood. An unsteady symmetric topology, which develops at higher Re and negatively impacts mixing, is presented, and mechanisms behind the wide range of mixing qualities predicted for this regime are explained. An optimal Re operating range is identified based on multiple experimental trials.


2019 ◽  
Vol 8 (4) ◽  
pp. 1 ◽  
Author(s):  
Francesco Meneguzzo ◽  
Federica Zabini ◽  
Lorenzo Albanese ◽  
Alfonso Crisci

Improving the food system sustainability and security is becoming an urgent global challenge. In this regard, one of the most effective routes is the shift of the human diet toward healthier and more sustainable consumption, involving in particular the prevalence of plant-based raw food materials. Controlled hydrodynamic cavitation (HC) technologies could help considerably in this transition. HC techniques are gaining increased scientific interest, and are quickly spreading across a wide range of technical fields, recently showing surprising performances with biological raw materials related to the food, agricultural and forestry sectors and resources. HC processes enjoy recognized advantages in the acceleration of the processing steps of plant-based food, the extraction of valuable bioactive compounds, the reduction and the valorization of waste streams, as well as the superior efficiency in resource use, energy consumption, process yield, and exergy balance than competing processes. Thus, HC is very promising candidate to help addressing the water-energy-food nexus, and, ultimately, sustainability. Findings obtained from direct experimental trials and recent literature concerning the applications of HC to food processing, provide a strong basis for novel investigation aimed at standardization, starting from the identification of the most suitable devices and the optimal processing parameters, eventually oriented to further spreading of HC applications.


2002 ◽  
Vol 36 (1) ◽  
pp. 95
Author(s):  
Edmund D. Brodie III ◽  
Edmund D. Brodie Jr. ◽  
Jeffrey E. Motychak

2002 ◽  
Vol 205 (10) ◽  
pp. 1377-1388 ◽  
Author(s):  
J. Matthias Starck ◽  
Kathleen Beese

SUMMARYGarter snakes Thamnophis sirtalis parietalis feed frequently but also tolerate extended periods of fasting when food is unavailable. We studied the dynamics, reversibility and repeatability of size changes of the small intestine and liver using ultrasonography. We employed light and transmission electron microscopy and flow cytometry to study the tissue mechanism that drives this flexibility. We compared garter snakes that fed every other day,snakes that fed once a week and fasting snakes. In all feeding trials, the size of the small intestine and the liver increased rapidly after feeding. Constantly feeding snakes maintained an elevated level of organ size, while snakes that were fed only once a week showed a marked up- and downregulation of organ size. Histology revealed the mucosal epithelium to be a transitional epithelium that can change cell configuration considerably to accommodate organ size changes. Upregulation of small intestine and liver size was always associated with the incorporation of lipid droplets into enterocytes and hepatocytes. Cell proliferation was not involved in upregulation of organ size. In contrast, cell proliferation increased during downregulation of organ size, indicating that cells worn out during digestion were replaced. The dynamics of flexibility and the functional features of the tissue were the same as described for the Burmese python Python molurus bivittatus. We suggest that garter snakes employ the same energetically cheap mechanism of organ size regulation as pythons, which allows for rapid, repeated and reversible size changes with no cell proliferation involved. Comparative evidence suggests that the transitional mucosal epithelium is an ancestral character of snakes and that feeding ecology is not directly related to the cytological features of the mucosal epithelium.


2019 ◽  
Vol 374 (1781) ◽  
pp. 20180055 ◽  
Author(s):  
Ulrika Candolin ◽  
Bob B. M. Wong

Pollution (e.g. by chemicals, noise, light, heat) is an insidious consequence of anthropogenic activity that affects environments worldwide. Exposure of wildlife to pollutants has the capacity to adversely affect animal communication and behaviour across a wide range of sensory modalities—by not only impacting the signalling environment, but also the way in which animals produce, perceive and interpret signals and cues. Such disturbances, particularly when it comes to sex, can drastically alter fitness. Here, we consider how pollutants disrupt communication and behaviour during mate choice, and the ecological and evolutionary changes such disturbances can engender. We explain how the different stages of mate choice can be affected by pollution, from encountering mates to the final choice, and how changes to these stages can influence individual fitness, population dynamics and community structure. We end with discussing how an understanding of these disturbances can help inform better conservation and management practices and highlight important considerations and avenues for future research. This article is part of the theme issue ‘Linking behaviour to dynamics of populations and communities: application of novel approaches in behavioural ecology to conservation’.


2020 ◽  
Vol 47 (6) ◽  
pp. 793-796
Author(s):  
Kelly Chen ◽  
Stephanie Keating ◽  
Danielle Strahl-Heldreth ◽  
Stuart Clark-Price

Sign in / Sign up

Export Citation Format

Share Document