scholarly journals P067 Proteins citrullination and Crohn’s disease: PAD4 but not PAD2 is a strong marker of ileal inflammation

2020 ◽  
Vol 14 (Supplement_1) ◽  
pp. S168-S169
Author(s):  
G Dragoni ◽  
B Creyns ◽  
G De Hertogh ◽  
B Verstockt ◽  
W J Wollants ◽  
...  

Abstract Background Citrullination is a post-translational modification of proteins, mediated by enzymes called PAD (peptidylarginine deiminases). The immune system can attack citrullinated proteins, leading to autoimmune diseases such as rheumatoid arthritis, multiple sclerosis and ulcerative colitis, and the activity of PAD2 and PAD4 in innate immune cells has been demonstrated for these disorders. Recently, high levels of PAD2 have been described in activated fibroblasts in the context of liver fibrosis. We therefore investigated the role of PAD2 and PAD4, both in inflammatory and fibrotic contexts of ileal Crohn’s disease (CD). Methods We obtained ileal transmural samples from patients operated for stricturing ileal CD. Three different macroscopic areas within each resection specimen (i.e. proximal normal ileum, inflamed ileum and fibrotic ileum) were selected and histologically confirmed by an expert pathologist. Patients undergoing ileocolic resection for other conditions (e.g. right colon cancer) and with healthy terminal ileum were used as controls. For each region (normal CD, inflamed CD, fibrotic CD and control), immunohistochemistry (IHC), RNA and protein evaluations for PAD2 and PAD4 were performed. Multiplex immunofluorescence (IF) for PAD2, PAD4, myeloperoxidase, neutrophil elastase, CD68, vimentin and α-smooth muscle actin were carried out to investigate the enzymes-expressing cells. Additional IF was performed to study citrullinated histone 3 (H3cit) expression, the product of PAD4 activity in neutrophils and component of neutrophil extracellular traps (NETs). Statistical analysis was carried out with Kruskal–Wallis test and post hoc Mann–Whitney test. Results Resection specimens from 13 CD and 11 controls were included. IHC and IF showed an increased expression of both PAD2 and PAD4 in the neutrophils of inflamed areas, in cytoplasm and nucleus, respectively (Figure 1). Activated fibroblasts (vimentin+ and α-smooth muscle actin+) were negative for both enzymes. PAD4 mRNA expression was increased in inflamed tissue (p = 0.001, p = 0.008 and p = 0.028 vs. normal CD, fibrotic CD and controls, respectively), and confirmed using Western Blot (Figure 2). H3cit was increased in the ileal inflammatory infiltrates too (Figure 3), confirming high PAD4 expression. For PAD2, no significant changes were observed at RNA and protein level, mainly due to its reduced expression in epithelial cells from normal to diseased tissue (Figure 4). Conclusion Both PAD2 and PAD4 are strongly expressed in neutrophils of CD ileal resection specimens, but only PAD4 shows a significantly higher expression in the inflammatory context which translates in the formation of NETs. No direct correlation was observed between PAD enzymes and intestinal fibroblasts.

2015 ◽  
Vol 309 (11) ◽  
pp. G888-G899 ◽  
Author(s):  
Chao Li ◽  
Kent Vu ◽  
Krystina Hazelgrove ◽  
John F. Kuemmerle

The igf1 gene is alternatively spliced as IGF-IEa and IGF-IEc variants in humans. In fibrostenotic Crohn's disease, the fibrogenic cytokine TGF-β1 induces IGF-IEa expression and IGF-I production in intestinal smooth muscle and results in muscle hyperplasia and collagen I production that contribute to stricture formation. Mechano-growth factor (MGF) derived from IGF-IEc induces skeletal and cardiac muscle hypertrophy following stress. We hypothesized that increased IGF-IEc expression and MGF production mediated smooth muscle hypertrophy also characteristic of fibrostenotic Crohn's disease. IGF-IEc transcripts and MGF protein were increased in muscle cells isolated from fibrostenotic intestine under regulation by endogenous TGF-β1. Erk5 and MEF2C were phosphorylated in vivo in fibrostenotic muscle; both were phosphorylated and colocalized to nucleus in response to synthetic MGF in vitro. Smooth muscle-specific protein expression of α-smooth muscle actin, γ-smooth muscle actin, and smoothelin was increased in affected intestine. Erk5 inhibition or MEF2C siRNA blocked smooth muscle-specific gene expression and hypertrophy induced by synthetic MGF. Conditioned media of cultured fibrostenotic muscle induced muscle hypertrophy that was inhibited by immunoneutralization of endogenous MGF or pro-IGF-IEc. The results indicate that TGF-β1-dependent IGF-IEc expression and MGF production in patients with fibrostenotic Crohn's disease regulates smooth muscle cell hypertrophy a critical factor that contributes to intestinal stricture formation.


2019 ◽  
Vol 12 (2) ◽  
pp. 368-374 ◽  
Author(s):  
Signe Holm Nielsen ◽  
Nicholas Willumsen ◽  
Diana Julie Leeming ◽  
Samuel Joseph Daniels ◽  
Susanne Brix ◽  
...  

2021 ◽  
Vol 11 (8) ◽  
pp. 3524
Author(s):  
Azeem Ul Yaqin Syed ◽  
Muhammad A. Ahmed ◽  
Eman I. AlSagob ◽  
Mansour Al-Askar ◽  
Abdulrahman M. AlMubarak ◽  
...  

The aim was to determine the cytotoxicity of Khat (Catha edulis (Vahl) Forssk. ex Endl) on normal oral fibroblasts (NOFs) and SCC4 (squamous carcinoma cells) along with expression of α-smooth muscle actin (α-SMA) in fibroblasts. Khat filtrate was prepared to obtain a concentrated viscous solution. NOFs and SCC4 cells were cultured in biological cabinets and were grown in Dulbeccos’ modified Eagles medium. Frozen cells were thawed at 37 °C and cell seeding was performed. NOFs and SCC4 cells were seeded on 96 well plates and allowed to attach. The medium was removed and a fresh medium containing different concentrations of Khat was added. The group without Khat served as a negative control and 4% paraformaldehyde as the positive control. Cell viability was assessed using the MTT assay and effect of Khat on fibroblast and SCC4 phenotypes was evaluated by immunostaining. Analysis of variance was used to assess data (p < 0.05). NOF 316 showed cell death in response to 4% paraformaldehyde, 12.5, 6.25, and 3.12 mg/mL of Khat. The highest concentration of Khat (25 mg/mL) failed to cause cytotoxicity of NOF 316. NOF 319 and NOF 26 displayed cell death at all concentrations of Khat, however, cytotoxicity was not dose dependent. NOF 18 and SCC4 cells showed dose-dependent cell death. NOF 316 showed α-SMA expression after 1 mg/mL of Khat exposure. Not all fibroblasts were α-SMA-positive, suggesting specific activation of a subset of fibroblasts. Khat is cytotoxic to NOF and SCC4 cells. Furthermore, it can also cause activation and phenotypic changes in oral fibroblasts, indicating a potential role in progression of oral squamous cell carcinoma.


1997 ◽  
Vol 33 (8) ◽  
pp. 622-627 ◽  
Author(s):  
M. Reza Ghassemifar ◽  
Roy W. Tarnuzzer ◽  
Nasser Chegini ◽  
Erkki Tarpila ◽  
Gregory S. Schultz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document