Detecting common breaks in the means of high dimensional cross-dependent panels

2021 ◽  
Author(s):  
Lajos Horváth ◽  
Zhenya Liu ◽  
Gregory Rice ◽  
Yuqian Zhao

Abstract The problem of detecting change points in the mean of high dimensional panel data with potentially strong cross–sectional dependence is considered. Under the assumption that the cross–sectional dependence is captured by an unknown number of common factors, a new CUSUM type statistic is proposed. We derive its asymptotic properties under three scenarios depending on to what extent the common factors are asymptotically dominant. With panel data consisting of N cross sectional time series of length T, the asymptotic results hold under the mild assumption that min {N, T} → ∞, with an otherwise arbitrary relationship between N and T, allowing the results to apply to most panel data examples. Bootstrap procedures are proposed to approximate the sampling distribution of the test statistics. A Monte Carlo simulation study showed that our test outperforms several other existing tests in finite samples in a number of cases, particularly when N is much larger than T. The practical application of the proposed results are demonstrated with real data applications to detecting and estimating change points in the high dimensional FRED-MD macroeconomic data set.

2016 ◽  
Vol 33 (2) ◽  
pp. 366-412 ◽  
Author(s):  
Lajos Horváth ◽  
Marie Hušková ◽  
Gregory Rice ◽  
Jia Wang

We consider the problem of estimating the common time of a change in the mean parameters of panel data when dependence is allowed between the cross-sectional units in the form of a common factor. A CUSUM type estimator is proposed, and we establish first and second order asymptotics that can be used to derive consistent confidence intervals for the time of change. Our results improve upon existing theory in two primary directions. Firstly, the conditions we impose on the model errors only pertain to the order of their long run moments, and hence our results hold for nearly all stationary time series models of interest, including nonlinear time series like the ARCH and GARCH processes. Secondly, we study how the asymptotic distribution and norming sequences of the estimator depend on the magnitude of the changes in each cross-section and the common factor loadings. The performance of our results in finite samples is demonstrated with a Monte Carlo simulation study, and we consider applications to two real data sets: the exchange rates of 23 currencies with respect to the US dollar, and the GDP per capita in 113 countries.


2019 ◽  
Vol 11 (1) ◽  
pp. 495-522 ◽  
Author(s):  
Hande Karabiyik ◽  
Franz C. Palm ◽  
Jean-Pierre Urbain

Economic panel data often exhibit cross-sectional dependence, even after conditioning on appropriate explanatory variables. Two approaches to modeling cross-sectional dependence in economic panel data are often used: the spatial dependence approach, which explains cross-sectional dependence in terms of distance among units, and the residual multifactor approach, which explains cross-sectional dependence by common factors that affect individuals to a different extent. This article reviews the theory on estimation and statistical inference for stationary and nonstationary panel data with cross-sectional dependence, particularly for models with a multifactor error structure. Tests and diagnostics for testing for unit roots, slope homogeneity, cointegration, and the number of factors are provided. We discuss issues such as estimating common factors, dealing with parameter plethora in practice, testing for structural stability and nonlinearity, and dealing with model and parameter uncertainty. Finally, we address issues related to the use of these economic panel models.


2021 ◽  
Author(s):  
Alexandra Soberon ◽  
Juan M Rodriguez-Poo ◽  
Peter M Robinson

Abstract In this paper, we consider efficiency improvement in a nonparametric panel data model with cross-sectional dependence. A Generalized Least Squares (GLS)-type estimator is proposed by taking into account this dependence structure. Parameterizing the cross-sectional dependence, a local linear estimator is shown to be dominated by this type of GLS estimator. Also, possible gains in terms of rate of convergence are studied. Asymptotically optimal bandwidth choice is justified. To assess the finite sample performance of the proposed estimators, a Monte Carlo study is carried out. Further, some empirical applications are conducted with the aim of analyzing the implications of the European Monetary Union for its member countries.


2017 ◽  
Vol 7 (1) ◽  
pp. 72 ◽  
Author(s):  
Lamya A Baharith

Truncated type I generalized logistic distribution has been used in a variety of applications. In this article, a new bivariate truncated type I generalized logistic (BTTGL) distributional models driven from three different copula functions are introduced. A study of some properties is illustrated. Parametric and semiparametric methods are used to estimate the parameters of the BTTGL models. Maximum likelihood and inference function for margin estimates of the BTTGL parameters are compared with semiparametric estimates using real data set. Further, a comparison between BTTGL, bivariate generalized exponential and bivariate exponentiated Weibull models is conducted using Akaike information criterion and the maximized log-likelihood. Extensive Monte Carlo simulation study is carried out for different values of the parameters and different sample sizes to compare the performance of parametric and semiparametric estimators based on relative mean square error.


2020 ◽  
Vol 9 (1) ◽  
pp. 47-60
Author(s):  
Samir K. Ashour ◽  
Ahmed A. El-Sheikh ◽  
Ahmed Elshahhat

In this paper, the Bayesian and non-Bayesian estimation of a two-parameter Weibull lifetime model in presence of progressive first-failure censored data with binomial random removals are considered. Based on the s-normal approximation to the asymptotic distribution of maximum likelihood estimators, two-sided approximate confidence intervals for the unknown parameters are constructed. Using gamma conjugate priors, several Bayes estimates and associated credible intervals are obtained relative to the squared error loss function. Proposed estimators cannot be expressed in closed forms and can be evaluated numerically by some suitable iterative procedure. A Bayesian approach is developed using Markov chain Monte Carlo techniques to generate samples from the posterior distributions and in turn computing the Bayes estimates and associated credible intervals. To analyze the performance of the proposed estimators, a Monte Carlo simulation study is conducted. Finally, a real data set is discussed for illustration purposes.


Author(s):  
Derek Hum ◽  
Wayne Simpson

ABSTRACTPast studies of aging and disability have been restricted to and by cross-sectional data. When cross-sectional surveys measure income, disability status and age at a common point in time, it is impossible to discern the process, and consequences, of a disability onset. In other words, it is not possible to examine the circumstances of the same individuals before, and after, the disability onset; nor whether effects differ according to the age at which the disability occurs. The present study uses a new panel data set, the Survey of Labour and Income Dynamics (SLID), to examine the prevalence of disability with respect to age, gender, and other socio-economic characteristics; however, its unique contribution is its investigation of disability onset, and the rates of entry into, and exit from, disability status by age group and gender. Further, we assess the financial circumstances of those who become disabled vis-à-vis a “control group”.


Sign in / Sign up

Export Citation Format

Share Document