scholarly journals Heparin is more effective than apixaban in inhibiting in vitro contact activated coagulation

2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
M.M Engelen ◽  
C Van Laer ◽  
M Jacquemin ◽  
C Vandenbriele ◽  
K Peerlinck ◽  
...  

Abstract Introduction Contact of blood with artificial surfaces such as mechanical support devices, catheters, and mechanical heart valves activates the contact activation (CA) pathway of coagulation. Furthermore, recent animal data and clinical studies suggest a more important contribution of CA in pathological thrombus formation in other cardiovascular diseases. Direct oral anticoagulants (DOACs) are recommended as first-line treatment in most patients who require long-term anticoagulation. However, because DOACs directly inhibit a single downstream coagulation factor (thrombin (fXIIa) or factor Xa (fXa)), it has been suggested that their efficacy could be reduced in the presence of strong activation of the CA pathway as compared to anticoagulants that target multiple, more upstream located coagulation factors. Purpose To compare the efficacy of a DOAC (apixaban) and heparin to suppress thrombin generation in the presence of strong CA pathway activation. Methods Pooled platelet-poor plasma was spiked with either apixaban (dissolved in DMSO and PBS) or unfractionated heparin to achieve therapeutic plasma levels. SynthASil, a commercially available mixture of phospholipids and silica, was used to stimulate the CA pathway in two different dilutions (1–80 and 5–80). Downstream coagulation was accessed by Thrombin Generation Test using Thrombinoscope by Stago and associated Thrombin Calibrator (activity 640 nM). The endogenous thrombin potential (area under the thrombin generation curve; ETP), peak thrombin generation (PTG), time to peak (ttPeak) and time to start (ttStart) were accessed. Results With decreasing concentrations of apixaban, stimulation with the lower dose SynthASil reveals an increasing ETP and PTG. As expected, ttPeak and ttStart decreased. Even supratherapeutic levels of apixaban (i.e. 1120 ng/mL) could not inhibit thrombin from being generated, in striking contrast with UFH where no thrombin was formed. Using a five times higher dose of SynthASil showed comparable ETP for all concentrations of apixaban, allocated around the control value. PTG, however, slightly increased with decreasing concentrations of apixaban. ttPeak and ttStart slightly decreased. Except for the subtherapeutic UFH concentration of 0,114 IU/mL, no thrombin was generated with UFH. Conclusion UFH is more effective in inhibiting downstream thrombin generation compared to apixaban as a response to activation of the CA pathway in vitro. These findings could help explain why direct inhibitors were not able to show non-inferiority in patients with mechanical heart valves and support the development of specific CA pathway inhibitors for patients with conditions that activate the CA pathway. Thrombin generation curves Funding Acknowledgement Type of funding source: None

1998 ◽  
Vol 79 (05) ◽  
pp. 1041-1047 ◽  
Author(s):  
Kathleen M. Donnelly ◽  
Michael E. Bromberg ◽  
Aaron Milstone ◽  
Jennifer Madison McNiff ◽  
Gordon Terwilliger ◽  
...  

SummaryWe evaluated the in vivo anti-metastatic activity of recombinant Ancylostoma caninum Anticoagulant Peptide (rAcAP), a potent (Ki = 265 pM) and specific active site inhibitor of human coagulation factor Xa originally isolated from bloodfeeding hookworms. Subcutaneous injection of SCID mice with rAcAP (0.01-0.2 mg/mouse) prior to tail vein injection of LOX human melanoma cells resulted in a dose dependent reduction in pulmonary metastases. In order to elucidate potential mechanisms of rAcAP’s anti-metastatic activity, experiments were carried out to identify specific interactions between factor Xa and LOX. Binding of biotinylated factor Xa to LOX monolayers was both specific and saturable (Kd = 15 nM). Competition experiments using antibodies to previously identified factor Xa binding proteins, including factor V/Va, effector cell protease receptor-1, and tissue factor pathway inhibitor failed to implicate any of these molecules as significant binding sites for Factor Xa. Functional prothrombinase activity was also supported by LOX, with a half maximal rate of thrombin generation detected at a factor Xa concentration of 2.4 nM. Additional competition experiments using an excess of either rAcAP or active site blocked factor Xa (EGR-Xa) revealed that most of the total factor Xa binding to LOX is mediated via interaction with the enzyme’s active site, predicting that the vast majority of cell-associated factor Xa does not participate directly in thrombin generation. In addition to establishing two distinct mechanisms of factor Xa binding to melanoma, these data raise the possibility that rAcAP’s antimetastatic effect in vivo might involve novel non-coagulant pathways, perhaps via inhibition of active-site mediated interactions between factor Xa and tumor cells.


Blood ◽  
1998 ◽  
Vol 91 (11) ◽  
pp. 4197-4205 ◽  
Author(s):  
J.M. Herbert ◽  
J.P. Hérault ◽  
A. Bernat ◽  
R.G.M. van Amsterdam ◽  
J.C. Lormeau ◽  
...  

Abstract SANORG 34006 is a new sulfated pentasaccharide obtained by chemical synthesis. It is an analog of the “synthetic pentasaccharide” (SR 90107/ ORG 31540) which represents the antithrombin (AT) binding site of heparin. SANORG 34006 showed a higher affinity to human AT than SR 90107/ORG 31540 (kd = 1.4 ± 0.3 v 48 ± 11 nmol/L), and it is a potent and selective catalyst of the inhibitory effect of AT on factor Xa (1,240 ± 15 anti–factor Xa U/mg v850 ± 27 anti-factor Xa U/mg for SR 90107/ORG 31540). In vitro, SANORG 34006 inhibited thrombin generation occurring via both the extrinsic and intrinsic pathway. After intravenous (IV) or subcutaneous (SC) administration to rabbits, SANORG 34006 displayed a long-lasting anti–factor Xa activity and inhibition of thrombin generation (TG) ex vivo. SANORG 34006 was slowly eliminated after IV or SC administration to rats, rabbits, and baboons, showed exceptionally long half-lives (between 9.2 hours in rats and 61.9 hours in baboons), and revealed an SC bioavailability near 100%. SANORG 34006 displayed antithrombotic activity by virtue of its potentiation of the anti–factor Xa activity of AT. It strongly inhibited thrombus formation in experimental models of thromboplastin/stasis-induced venous thrombosis in rats (IV) and rabbits (SC) (ED50values = 40.0 ± 3.4 and 105.0 ± 9.4 nmol/kg, respectively). The duration of its antithrombotic effects closely paralleled the ex vivo anti–factor Xa activity. SANORG 34006 enhanced rt-PA–induced thrombolysis and inhibited accretion of125I-fibrinogen onto a preformed thrombus in the rabbit jugular vein suggesting that concomitant use of SANORG 34006 during rt-PA therapy might be helpful in facilitating thrombolysis and preventing fibrin accretion onto the thrombus under lysis. Contrary to standard heparin, SANORG 34006 did not enhance bleeding in a rabbit ear incision model at a dose that equals 10 times the antithrombotic ED50 in this species and, therefore, exhibited a favorable therapeutic index. We suggest that SANORG 34006 is a promising compound in the treatment and prevention of various thrombotic diseases.


2009 ◽  
Vol 101 (06) ◽  
pp. 1163-1169 ◽  
Author(s):  
Torsten Linde ◽  
Thomas Michel ◽  
Kathrin Hamilton ◽  
Ulrich Steinseifer ◽  
Ivar Friedrich ◽  
...  

SummaryPrevention of valve thrombosis in patients after prosthetic mechanical heart valve replacement and heparin-induced thrombocytopenia (HIT) is still an open issue. The aim of the present in-vitro study was to investigate the efficacy of argatroban and bivalirudin in comparison to unfractionated heparin (UFH) in preventing thrombus formation on mechanical heart valves. Blood (230 ml) from healthy young male volunteers was anticoagulated either by UFH, argatroban bolus, argatroban bolus plus continuous infusion, bivalirudin bolus, or bivalirudin bolus plus continuous infusion. Valve prostheses were placed in a newly developed in-vitro thrombosis tester and exposed to the anticoagulated blood samples. To quantify the thrombi, electron microscopy was performed, and each valve was weighed before and after the experiment. Mean thrombus weight in group 1 (UFH) was 117 + 93 mg, in group 2 (argatroban bolus) 722 + 428 mg, in group 3 (bivalirudin bolus) 758 + 323 mg, in group 4 (argatroban bolus plus continuous infusion) 162 + 98 mg, and in group 5 (bivalirudin bolus plus continuous infusion) 166 + 141 mg (p-value <0.001). Electron microscopy showed increased rates of thrombus formation in groups 2 and 3. Argatroban and bivalirudin were as effective as UFH in preventing thrombus formation on valve prostheses in our in-vitro investigation when they were administered continuously. We hypothesise that continuous infusion of argatroban or bivalirudin are optimal treatment options for patients with HIT after mechanical heart valve replacement for adapting oral to parenteral anticoagulation or vice versa.


Author(s):  
Amin Polzin ◽  
Lisa Dannenberg ◽  
Manuela Thienel ◽  
Martin Orban ◽  
Georg Wolff ◽  
...  

AbstractNonvitamin K oral anticoagulants (NOACs) or direct oral anticoagulants comprise inhibitors of factor Xa (rivaroxaban, apixaban, edoxaban) or factor IIa (dabigatran). Both classes efficiently interfere with the final or penultimate step of the coagulation cascade and showed superior net clinical benefit compared with vitamin K antagonists for prevention of thromboembolic events in patients with AF and for prevention and therapy of deep vein thrombosis and pulmonary embolism. None the less, accumulating data suggested, that there may be differences regarding the frequency of atherothrombotic cardiovascular events between NOACs. Thus, the optimal individualized NOAC for each patient remains a matter of debate. Against this background, some basic and translational analyses emphasized NOAC effects that impact on platelet activity and arterial thrombus formation beyond inhibition of plasmatic coagulation. In this review, we will provide an overview of the available clinical and translational evidence for so-called noncanonical NOAC effects on platelet activation and arterial thrombosis.


2020 ◽  
Vol 9 (12) ◽  
pp. 3805
Author(s):  
Johannes Gratz ◽  
Christoph J. Schlimp ◽  
Markus Honickel ◽  
Nadine Hochhausen ◽  
Herbert Schöchl ◽  
...  

Guidelines for the treatment of severe bleeding comprise viscoelastic-test-guided use of coagulation factor concentrates as part of their recommendations. The aim of this study is to investigate the effects of substituting fibrinogen, prothrombin complex concentrate, and a combination of both on conventional coagulation tests, viscoelastic test results, and thrombin generation. Blood was drawn from seven healthy volunteers to obtain platelet-free plasma, which later was diluted by replacing 40%, 60%, 80%, 90%, 95%, and 99% with a crystalloid solution. The diluted samples were spiked with fibrinogen concentrate, prothrombin complex concentrate, a combination of both, or a corresponding amount of crystalloid solution. Up to a dilution level of 95%, viscoelastically determined clotting time was significantly shorter in the group substituted with fibrinogen only in comparison with the additional use of prothrombin complex concentrate. Clot firmness and endogenous thrombin potential remained at relatively stable values up to a dilution level of 95% with the substitution of fibrinogen but not prothrombin complex concentrate. Substitution of prothrombin complex concentrate led to an excessive overshoot of thrombin generation. The results of our study question currently propagated treatment algorithms for bleeding patients that include the use of prothrombin complex concentrate for patients without former intake of oral anticoagulants. Even in severely bleeding patients, thrombin generation might be sufficient to achieve adequate hemostasis.


Author(s):  
Stephen Gerfer ◽  
Maria Grandoch ◽  
Thorsten C.W. Wahlers ◽  
Elmar W. Kuhn

AbstractPatients with a mechanical heart valve need a lifelong anticoagulation due to the increased risk of valve thrombosis and thrombo-embolism. Currently, vitamin K antagonists (VKA) are the only approved class of oral anticoagulants, but relevant interactions and side effects lead to a large number of patients not achieving the optimal therapeutic target international normalized ration (INR). Therefore, steady measurements of the INR are imperative to ensure potent anticoagulation within a distinctive range. Direct oral anticoagulants (DOACs) with newer agents could serve as a possible alternative to VKAs in this patient cohort. DOACs are approved for several indications, e.g., atrial fibrillation (AF). They only have a minor interaction potential, which is why monitoring is not needed. Thereby, DOACs improve the livability of patients in need of chronical anticoagulation compared with VKAs. In contrast to dual platelet inhibition using aspirin in combination with an ADP receptor antagonist and the direct thrombin inhibitor dabigatran, the oral factor Xa inhibitors apixaban and rivaroxaban show promising results according to current evidence. In small-scale studies, factor Xa inhibitors were able to prevent thrombosis and thrombo-embolic events in patients with mechanical heart valves. Finally, DOACs seem to represent a feasible treatment option in patients with mechanical heart valves, but further studies are needed to evaluate clinical safety. In addition to the ongoing PROACT Xa trial with apixaban in patients after aortic On-X valve implantation, studies in an all-comer collective with rivaroxaban could be promising.


2018 ◽  
Vol 118 (09) ◽  
pp. 1535-1544 ◽  
Author(s):  
Georges Jourdi ◽  
Isabelle Gouin-Thibault ◽  
Virginie Siguret ◽  
Sophie Gandrille ◽  
Pascale Gaussem ◽  
...  

Increasing number of patients are treated with direct oral anticoagulants (DOAC). An antidote for dabigatran inhibiting thrombin (idarucizumab) is available but no antidote is yet approved for the factor Xa (FXa) inhibitors (xabans). We hypothesized that a complex between Gla-domainless FXa and α2-macroglobulin (GDFXa-α2M) may neutralize the xabans without interfering with normal blood coagulation.Purified α2M was incubated with GDFXa to form GDFXa-α2M. Affinity of apixaban and rivaroxaban for GDFXa-α2M was only slightly decreased compared to FXa. Efficacy and harmlessness of GDFXa-α2M were tested in vitro and in vivo. Stoichiometric excess of GDFXa-α2M neutralized rivaroxaban and apixaban as attested by clot waveform assay and rotational thromboelastometry, whereas GDFXa-α2M alone had no effect on these assays. Efficacy and pro-thrombotic potential of GDFXa-α2M were also assessed in vivo. Half-life of GDFXa-α2M in C57BL6 mice was 4.9 ± 1.1 minutes, but a 0.5 mg/mouse dose resulted in uptake saturation such that 50% persistence was still observed after 170 minutes. Single administration of GDFXa-α2M significantly decreased the rivaroxaban-induced bleeding time (p < 0.001) and blood loss (p < 0.01). GDFXa-α2M did not increase D-dimer or thrombin–antithrombin complex formation, suggesting a lack of pro-thrombotic potential.GDFXa-α2M is therefore an attractive candidate for xaban neutralization neither pro- nor anticoagulant in vitro as well as in vivo.


2020 ◽  
Vol 70 (5) ◽  
pp. 297-309
Author(s):  
Violeta Dopsaj

The classical oral anticoagulants are increasingly being replaced in clinical practice by new antithrombotic drugs, which act by enabling direct inhibition of coagulation factor IIa (FIIa) or factor Xa (FXa). These drugs have multiple acronyms, including NOACs (new, non-vitamin K antagonist) or DOACs (direct oral anticoagulants), and currently include dabigatran (FIIa inhibitor), and rivaroxaban, apixaban, and edoxaban (FXa inhibitors). These drugs are approved for stroke prevention in patients with non-valvular atrial fibrillation and the prevention and treatment of venous thromboembolism. The "mantra" that DOACs do not require laboratory monitoring is not entirely correct because laboratory testing for drug effects is needed in many situations, because they influence hemostasis tests and in situations in which urgent measurement of DOACs is required. This should be very important to consider in the clinical situation for numbers of indications and increasing numbers of patients on DOACs therapy. The main aim of this article is to provide practical issues to general laboratory testing for DOACs, as well as to help avoid diagnostic errors associated with hemostasis testing. The assays for DOAC quantification must be available in medical centers on a whole day basis, to facilitate optimal drug management in conditions when things go wrong or in urgent cases of immediate reversal of anticoagulation or appropriate administration of a specific antidote.


Sign in / Sign up

Export Citation Format

Share Document