scholarly journals Assaying RNA chaperone activity in vivo using a novel RNA folding trap

1999 ◽  
Vol 18 (13) ◽  
pp. 3776-3782 ◽  
Author(s):  
E. Clodi
2006 ◽  
Vol 1 (3) ◽  
pp. 1273-1277 ◽  
Author(s):  
Silvia Prenninger ◽  
Renée Schroeder ◽  
Katharina Semrad

2009 ◽  
Vol 84 (4) ◽  
pp. 2169-2175 ◽  
Author(s):  
Sonia Zúñiga ◽  
Jazmina L. G. Cruz ◽  
Isabel Sola ◽  
Pedro A. Mateos-Gómez ◽  
Lorena Palacio ◽  
...  

ABSTRACT Purified nucleocapsid protein (N protein) from transmissible gastroenteritis virus (TGEV) enhanced hammerhead ribozyme self-cleavage and favored nucleic acid annealing, properties that define RNA chaperones, as previously reported. Several TGEV N-protein deletion mutants were expressed in Escherichia coli and purified, and their RNA binding ability and RNA chaperone activity were evaluated. The smallest N-protein domain analyzed with RNA chaperone activity, facilitating DNA and RNA annealing, contained the central unstructured region (amino acids 117 to 268). Interestingly, N protein and its deletion mutants with RNA chaperone activity enhanced template switching in a retrovirus-derived heterologous system, reinforcing the concept that TGEV N protein is an RNA chaperone that could be involved in template switching. This result is in agreement with the observation that in vivo, N protein is not necessary for TGEV replication, but it is required for efficient transcription.


2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Katharina Semrad

Proteins with RNA chaperone activity are ubiquitous proteins that play important roles in cellular mechanisms. They prevent RNA from misfolding by loosening misfolded structures without ATP consumption. RNA chaperone activity is studiedin vitroandin vivousing oligonucleotide- or ribozyme-based assays. Due to their functional as well as structural diversity, a common chaperoning mechanism or universal motif has not yet been identified. A growing database of proteins with RNA chaperone activity has been established based on evaluation of chaperone activity via the described assays. Although the exact mechanism is not yet understood, it is more and more believed that disordered regions within proteins play an important role. This possible mechanism and which proteins were found to possess RNA chaperone activity are discussed here.


2005 ◽  
Vol 33 (3) ◽  
pp. 450-456 ◽  
Author(s):  
L. Rajkowitsch ◽  
K. Semrad ◽  
O. Mayer ◽  
R. Schroeder

Proteins with RNA chaperone activity promote RNA folding by loosening the structure of misfolded RNAs or by preventing their formation. How these proteins achieve this activity is still unknown, the mechanism is not understood and it is unclear whether this activity is always based on the same mechanism or whether different RNA chaperones use different mechanisms. To address this question, we compare and discuss in this paper a set of assays that have been used to measure RNA chaperone activity. In some assays, this activity is related to the acceleration of monomolecular reactions such as group I intron cis-splicing or anti-termination of transcription. Hereby, it is proposed that the proteins release the RNAs from folding traps, which represent the kinetic barriers during the folding process and involve the loosening of structural elements. In most assays, however, bimolecular reactions are monitored, which include the simple acceleration of annealing of two complementary RNAs, the turnover stimulation of ribozyme cleavage and group I intron trans-splicing. The acceleration of these reactions most probably involves the unfolding of structures that interfere with annealing or folding and may in addition provoke annealing by crowding. Most assays are performed in vitro, where conditions might differ substantially from intracellular conditions, and two assays have been reported that detect RNA chaperone activity in vivo.


RNA ◽  
2016 ◽  
Vol 22 (10) ◽  
pp. 1574-1591 ◽  
Author(s):  
Susann Friedrich ◽  
Tobias Schmidt ◽  
Angelika Schierhorn ◽  
Hauke Lilie ◽  
Grit Szczepankiewicz ◽  
...  

2021 ◽  
Vol 11 (15) ◽  
pp. 6865
Author(s):  
Eun Seon Lee ◽  
Joung Hun Park ◽  
Seong Dong Wi ◽  
Ho Byoung Chae ◽  
Seol Ki Paeng ◽  
...  

The thioredoxin-h (Trx-h) family of Arabidopsis thaliana comprises cytosolic disulfide reductases. However, the physiological function of Trx-h2, which contains an additional 19 amino acids at its N-terminus, remains unclear. In this study, we investigated the molecular function of Trx-h2 both in vitro and in vivo and found that Arabidopsis Trx-h2 overexpression (Trx-h2OE) lines showed significantly longer roots than wild-type plants under cold stress. Therefore, we further investigated the role of Trx-h2 under cold stress. Our results revealed that Trx-h2 functions as an RNA chaperone by melting misfolded and non-functional RNAs, and by facilitating their correct folding into active forms with native conformation. We showed that Trx-h2 binds to and efficiently melts nucleic acids (ssDNA, dsDNA, and RNA), and facilitates the export of mRNAs from the nucleus to the cytoplasm under cold stress. Moreover, overexpression of Trx-h2 increased the survival rate of the cold-sensitive E. coli BX04 cells under low temperature. Thus, our data show that Trx-h2 performs function as an RNA chaperone under cold stress, thus increasing plant cold tolerance.


RNA Biology ◽  
2010 ◽  
Vol 7 (6) ◽  
pp. 803-811 ◽  
Author(s):  
Andreas Liebeg ◽  
Oliver Mayer ◽  
Christina Waldsich
Keyword(s):  

RNA ◽  
2007 ◽  
Vol 13 (12) ◽  
pp. 2053-2060 ◽  
Author(s):  
L. Rajkowitsch ◽  
R. Schroeder

Sign in / Sign up

Export Citation Format

Share Document