scholarly journals PI 3-kinase gamma and protein kinase C-zeta mediate RAS-independent activation of MAP kinase by a Gi protein-coupled receptor

1999 ◽  
Vol 18 (2) ◽  
pp. 386-395 ◽  
Author(s):  
H. Takeda
1993 ◽  
Vol 13 (5) ◽  
pp. 3076-3083
Author(s):  
K Irie ◽  
M Takase ◽  
K S Lee ◽  
D E Levin ◽  
H Araki ◽  
...  

The PKC1 gene of Saccharomyces cerevisiae encodes a homolog of mammalian protein kinase C that is required for normal growth and division of yeast cells. We report here the isolation of the yeast MKK1 and MKK2 (for mitogen-activated protein [MAP] kinase-kinase) genes which, when overexpressed, suppress the cell lysis defect of a temperature-sensitive pkc1 mutant. The MKK genes encode protein kinases most similar to the STE7 product of S. cerevisiae, the byr1 product of Schizosaccharomyces pombe, and vertebrate MAP kinase-kinases. Deletion of either MKK gene alone did not cause any apparent phenotypic defects, but deletion of both MKK1 and MKK2 resulted in a temperature-sensitive cell lysis defect that was suppressed by osmotic stabilizers. This phenotypic defect is similar to that associated with deletion of the BCK1 gene, which is thought to function in the pathway mediated by PCK1. The BCK1 gene also encodes a predicted protein kinase. Overexpression of MKK1 suppressed the growth defect caused by deletion of BCK1, whereas an activated allele of BCK1 (BCK1-20) did not suppress the defect of the mkk1 mkk2 double disruption. Furthermore, overexpression of MPK1, which encodes a protein kinase closely related to vertebrate MAP kinases, suppressed the defect of the mkk1 mkk2 double mutant. These results suggest that MKK1 and MKK2 function in a signal transduction pathway involving the protein kinases encoded by PKC1, BCK1, and MPK1. Genetic epistasis experiments indicated that the site of action for MKK1 and MKK2 is between BCK1 and MPK1.


1993 ◽  
Vol 289 (1) ◽  
pp. 283-287 ◽  
Author(s):  
L Pang ◽  
S J Decker ◽  
A R Saltiel

Both bombesin and epidermal growth factor (EGF) are potent mitogens in Swiss 3T3 cells that nonetheless have dissimilar receptor structures. To explore possible common intracellular events involved in the stimulation of cellular growth by these two peptides, we have evaluated the regulation of the mitogen-activated protein (MAP) kinase. Exposure of Swiss 3T3 cells to bombesin, EGF or the protein kinase C activator phorbol 12-myristate 13-acetate (PMA) causes the rapid and transient stimulation of the enzyme activity. Pretreatment of cells with the protein kinase inhibitor H-7, or down-regulation of cellular protein kinase C by prolonged exposure to PMA, causes a decrease of over 90% in the activation of MAP kinase by bombesin. In contrast, these treatments have no effect on the stimulation of MAP kinase by EGF. The stimulation of MAP kinase activity by bombesin is dose-dependent, occurring over a narrow concentration range of the peptide. Both EGF and bombesin stimulate the phosphorylation of an immunoprecipitable MAP kinase protein migrating at 42 kDa on SDS/PAGE. Phosphoamino acid analysis of this phosphorylated protein reveals that EGF and bombesin stimulate phosphorylation on tyrosine, threonine and serine residues. Tyrosine phosphorylation of the enzyme, as evaluated by antiphosphotyrosine blotting of the immunoprecipitated protein, reveals that the time course of phosphorylation by both mitogens correlates with stimulation of enzyme activity. These results provide further evidence for the convergence of discrete pathways emanating from tyrosine kinase and G-protein-linked receptors in the regulation of MAP kinase.


1994 ◽  
Vol 267 (3) ◽  
pp. G401-G408 ◽  
Author(s):  
R. D. Duan ◽  
J. A. Williams

The existence and activation of mitogen-activated protein (MAP) kinase in isolated pancreatic acini have been demonstrated. Immunoblotting and immunoprecipitation revealed two forms of MAP kinase in pancreatic acini, with relative molecular masses of approximately 42 and 44 kDa. Both forms of MAP kinase were activated by cholecystokinin (CCK). The threshold concentration of CCK was approximately 3 pM, and the maximal effect occurred at 1 nM, which enhanced MAP kinase activity by 2.5-fold, as determined in polyacrylamide gel copolymerized with substrate myelin basic protein. Activation of MAP kinase by CCK was rapid, reaching a maximum within 5-10 min that subsequently declined. Bombesin and carbachol but not secretin or vasoactive intestinal peptide also activated MAP kinase. CCK-induced activation of MAP kinase may be mediated by protein kinase C, since 12-O-tetradecanoylphorbol 13-acetate (TPA) mimicked the effect of CCK and staurosporine concentration dependently inhibited the action of CCK. Treatment of acini with thapsigargin, ionomycin, or ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid did not influence MAP kinase, indicating that mobilization of intracellular calcium by CCK is not important in activation of acinar MAP kinase. CCK and TPA increased tyrosine phosphorylation of both 42- and 44-kDa forms. Genistein and tyrphostin 23, the inhibitors of tyrosine kinase, suppressed the activation of MAP kinase by CCK. In conclusion, MAP kinase in pancreatic acini is activated by agonists related to hydrolysis of phosphoinositide, via a mechanism involving protein kinase C and tyrosine kinase.


Sign in / Sign up

Export Citation Format

Share Document