scholarly journals P6388Cardiac arrhythmia classification using computational intelligence: neural networks and fuzzy logic techniques

2017 ◽  
Vol 38 (suppl_1) ◽  
Author(s):  
P. Melin ◽  
E. Ramirez ◽  
G. Prado-Arechiga
Author(s):  
Kazuo Tanaka ◽  

We are witnessing a rapidly growing interest in the field of advanced computational intelligence, a "soft computing" technique. As Prof. Zadeh has stated, soft computing integrates fuzzy logic, neural networks, evolutionary computation, and chaos. Soft computing is the most important technology available for designing intelligent systems and control. The difficulties of fuzzy logic involve acquiring knowledge from experts and finding knowledge for unknown tasks. This is related to design problems in constructing fuzzy rules. Neural networks and genetic algorithms are attracting attention for their potential in raising the efficiency of knowledge finding and acquisition. Combining the technologies of fuzzy logic and neural networks and genetic algorithms, i.e., soft computing techniques will have a tremendous impact on the fields of intelligent systems and control design. To explain the apparent success of soft computing, we must determine the basic capabilities of different soft computing frameworks. Give the great amount of research being done in these fields, this issue addresses fundamental capabilities. This special issue is devoted to advancing computational intelligence in control theory and applications. It contains nine excellent papers dealing with advanced computational intelligence in control theory and applications such as fuzzy control and stability, mobile robot control, neural networks, gymnastic bar action, petroleum plant control, genetic programming, Petri net, and modeling and prediction of complex systems. As editor of this special issue, I believe that the excellent research results it contains provide the basis for leadership in coming research on advanced computational intelligence in control theory and applications.


2018 ◽  
Vol 6 (3) ◽  
pp. 1-7
Author(s):  
Ekavi Antoniou ◽  
Eleni Vergini ◽  
Peter Groumpos

Complex systems modeling is a rapidly developing research field which incorporates various scientific sectors from bio medicine and energy to economic and social sciences. However, as the systems’ complexity increases pure mathematical modeling techniques prove to be a rather laborious task which demands wasting many resources and in many occasions, could not lead to the desired system response. This realization led researchers turn their attention into the field of computational intelligence; Neural Networks and Fuzzy Logic etc. In this way scientists were able to provide a model of a system which is strongly characterized by fuzziness and uncertainties. Fuzzy Cognitive Maps (FCM) in another methodology which lies in the field of computational intelligence. FCM came as a combination of Neural Networks and Fuzzy Logic and were first introduced by B. Kosko in 1986. All these years they have been applied on a variety of systems such as social, psychological, medical, agricultural, marketing, business management, energy, advertising etc, both for systems modeling and decision-making support systems, with very promising results. Classical FCM approach uses the experts’ knowledge in order to create the initial knowledge base of each system. Based on the experts’ knowledge, the interrelations among the system variables are determined and the system response is defined. Through years, improvements have been made and learning algorithms were embodied in the initial approach. Learning algorithms used data information and history to update the weights (the interconnections) among concepts (variables), contributed to the optimization of FCMs and reached more efficient systems’ response. However, all these decades, researchers have mentioned some weak points as well. In the last years substantial research has been made in order to overcome some of the well-known limitations of the FCM methodology. This paper will apply a revised approach of the Fuzzy Cognitive Maps method on a techno-economic study of an autonomous hybrid system photovoltaic and geothermal energy Specifically, the FCM model of this system includes twenty-five concepts and three of them are considered as outputs, the total system efficiency, the total energy production and the total system cost. The aim of the study is to provide maximum performance with the minimum total cost. To this end results for both the classic and revised approach of the FCM method are provided and discussed. Computational Intelligence and especially Fuzzy Cognitive Maps are a very promising field in modeling complex systems. The latest approaches of the method show that FCM can open new paths towards higher efficiency, more accurate models and effective decision-making results.


Author(s):  
Neelam Kumari

In this paper I have discussed about a various techniques i.e. Neural Network, Fuzzy Logic, and Genetic algorithm and a few concepts of automata theory. Every application that deals with fuzzy logic also deals with Neural Networks and Genetic algorithm. But how the application will work depends totally on Computational Intelligence. So here I discussed Computational Intelligence with Automata Theory concepts for designing any application.


Author(s):  
Bharat Sundaram ◽  
Marimuthu Palaniswani ◽  
Alistair Shilton ◽  
Rezaul Begg

Computational intelligence (CI) encompasses approaches primarily based on artificial neural networks, fuzzy logic rules, evolutionary algorithms, support vector machines and also approaches that combine two or more techniques (hybrid). These methods have been applied to solve many complex and diverse problems. Recent years have seen many new developments in CI techniques and, consequently, this has led to many applications in a variety of areas including engineering, finance, social and biomedical. In particular, CI techniques are increasingly being used in biomedical and human movement areas because of the complexity of the biological systems. The main objective of this chapter is to provide a brief description of the major computational intelligence techniques for pattern recognition and modelling tasks that often appear in biomedical, health and human movement research.


Author(s):  
Bharat Sundaram ◽  
Marimuthu Palaniswani ◽  
Alistair Shilton ◽  
Rezaul Begg

Computational intelligence (CI) encompasses approaches primarily based on artificial neural networks, fuzzy logic rules, evolutionary algorithms, support vector machines and also approaches that combine two or more techniques (hybrid). These methods have been applied to solve many complex and diverse problems. Recent years have seen many new developments in CI techniques and, consequently, this has led to many applications in a variety of areas including engineering, finance, social and biomedical. In particular, CI techniques are increasingly being used in biomedical and human movement areas because of the complexity of the biological systems. The main objective of this chapter is to provide a brief description of the major computational intelligence techniques for pattern recognition and modelling tasks that often appear in biomedical, health and human movement research.


2012 ◽  
Vol 9 (2) ◽  
pp. 53-57 ◽  
Author(s):  
O.V. Darintsev ◽  
A.B. Migranov

The main stages of solving the problem of planning movements by mobile robots in a non-stationary working environment based on neural networks, genetic algorithms and fuzzy logic are considered. The features common to the considered intellectual algorithms are singled out and their comparative analysis is carried out. Recommendations are given on the use of this or that method depending on the type of problem being solved and the requirements for the speed of the algorithm, the quality of the trajectory, the availability (volume) of sensory information, etc.


Author(s):  
Abeer A. Amer ◽  
Soha M. Ismail

The following article has been withdrawn on the request of the author of the journal Recent Advances in Computer Science and Communications (Recent Patents on Computer Science): Title: Diabetes Mellitus Prognosis Using Fuzzy Logic and Neural Networks Case Study: Alexandria Vascular Center (AVC) Authors: Abeer A. Amer and Soha M. Ismail* Bentham Science apologizes to the readers of the journal for any inconvenience this may cause BENTHAM SCIENCE DISCLAIMER: It is a condition of publication that manuscripts submitted to this journal have not been published and will not be simultaneously submitted or published elsewhere. Furthermore, any data, illustration, structure or table that has been published elsewhere must be reported, and copyright permission for reproduction must be obtained. Plagiarism is strictly forbidden, and by submitting the article for publication the authors agree that the publishers have the legal right to take appropriate action against the authors, if plagiarism or fabricated information is discovered. By submitting a manuscript, the authors agree that the copyright of their article is transferred to the publishers if and when the article is accepted for publication.


Author(s):  
Mahamat Loutfi Imrane ◽  
Achille Melingui ◽  
Joseph Jean Baptiste Mvogo Ahanda ◽  
Fredéric Biya Motto ◽  
Rochdi Merzouki

Some autonomous navigation methods, when implemented alone, can lead to poor performance, whereas their combinations, when well thought out, can yield exceptional performances. We have demonstrated this by combining the artificial potential field and fuzzy logic methods in the framework of mobile robots’ autonomous navigation. In this article, we investigate a possible combination of three methods widely used in the autonomous navigation of mobile robots, and whose individual implementation still does not yield the expected performances. These are as follows: the artificial potential field, which is quick and easy to implement but faces local minima and robustness problems. Fuzzy logic is robust but computationally intensive. Finally, neural networks have an exceptional generalization capacity, but face data collection problems for the learning base and robustness. This article aims to exploit the advantages offered by each of these approaches to design a robust, intelligent, and computationally efficient controller. The combination of the artificial potential field and interval type-2 fuzzy logic resulted in an interval type-2 fuzzy logic controller whose advantage over the classical interval type-2 fuzzy logic controller was the small size of the rule base. However, it kept all the classical interval type-2 fuzzy logic controller characteristics, with the major disadvantage that type-reduction remains the main cause of high computation time. In this article, the type-reduction process is replaced with two layers of neural networks. The resulting controller is an interval type-2 fuzzy neural network controller with the artificial potential field controller’s outputs as auxiliary inputs. The results obtained by performing a series of experiments on a mobile platform demonstrate the proposed navigation system’s efficiency.


Sign in / Sign up

Export Citation Format

Share Document