scholarly journals Pulmonary vein anatomy predicts freedom from atrial fibrillation using remote magnetic navigation for circumferential pulmonary vein ablation

EP Europace ◽  
2013 ◽  
Vol 15 (8) ◽  
pp. 1136-1142 ◽  
Author(s):  
C. Sohns ◽  
J. M. Sohns ◽  
L. Bergau ◽  
S. Sossalla ◽  
D. Vollmann ◽  
...  
2013 ◽  
Vol 34 (suppl 1) ◽  
pp. P2320-P2320
Author(s):  
D. Vollmann ◽  
L. Luethje ◽  
J. Seegers ◽  
C. Sohns ◽  
S. Sossalla ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Xiao-yu Liu ◽  
Hai-feng Shi ◽  
Jie Zheng ◽  
Ku-lin Li ◽  
Xiao-xi Zhao ◽  
...  

Objective. The objective of this study was to investigate the impact of left atrial (LA) size for the ablation of atrial fibrillation (AF) using remote magnetic navigation (RMN). Methods. A total of 165 patients with AF who underwent catheter ablation using RMN were included. The patients were divided into two groups based on LA diameter. Eighty-three patients had small LA (diameter <40 mm; Group A), and 82 patients had a large LA (diameter ≥40 mm; Group B). Results. During mapping and ablation, X-ray time (37.0 (99.0) s vs. 12 (30.1) s, P<0.001) and X-ray dose (1.4 (2.7) gy·cm2 vs. 0.7 (2.1) gy·cm2, P=0.013) were significantly higher in Group A. No serious complications occurred in any of the patients. There was no statistical difference in the rate of first anatomical attempt of pulmonary vein isolation between the two groups (71.1% vs. 57.3%, P=0.065). However, compared with Group B, the rate of sinus rhythm was higher (77.1% vs. 58.5%, P<0.001) during the follow-up period. More patients in Group A required a sheath adjustment (47/83 vs. 21/82, P<0.001), presumably due to less magnets positioned outside of the sheath. In vitro experiments with the RMN catheter demonstrated that only one magnet exposed created the sheath affects which influenced the flexibility of the catheter. Conclusions. AF ablation using RMN is safe and effective in both small and large LA patients. Patients with small LA may pose a greater difficulty when using RMN which may be attributed to the fewer magnets beyond the sheath. As a result, the exposure of radiation was increased. This study found that having at least two magnets of the catheter positioned outside of the sheath can ensure an appropriate flexibility of the catheter.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yan-Jing Wang ◽  
Huan Sun ◽  
Xiao-Fei Fan ◽  
Meng-Chao Zhang ◽  
Ping Yang ◽  
...  

Abstract Background The ablation targets of atrial fibrillation (AF) are adjacent to bronchi and pulmonary arteries (PAs). We used computed tomography (CT) to evaluate the anatomical correlation between left atrium (LA)-pulmonary vein (PV) and adjacent structures. Methods Data were collected from 126 consecutive patients using coronary artery CT angiography. The LA roof was divided into three layers and nine points. The minimal spatial distances from the nine points and four PV orifices to the adjacent bronchi and PAs were measured. The distances from the PV orifices to the nearest contact points of the PVs, bronchi, and PAs were measured. Results The anterior points of the LA roof were farther to the bronchi than the middle or posterior points. The distances from the nine points to the PAs were shorter than those to the bronchi (5.19 ± 3.33 mm vs 8.62 ± 3.07 mm; P < .001). The bilateral superior PV orifices, especially the right superior PV orifices were closer to the PAs than the inferior PV orifices (left superior PV: 7.59 ± 4.14 mm; right superior PV: 4.43 ± 2.51 mm; left inferior PV: 24.74 ± 5.26 mm; right inferior PV: 22.33 ± 4.75 mm) (P < .001). Conclusions The right superior PV orifices were closer to the bronchi and PAs than other PV orifices. The ablation at the mid-posterior LA roof had a higher possibility to damage bronchi. CT is a feasible method to assess the anatomical adjacency in vivo, which might provide guidance for AF ablation.


EP Europace ◽  
2003 ◽  
Vol 4 (Supplement_1) ◽  
pp. A36-A36
Author(s):  
D. Husser ◽  
A. Bollmann ◽  
S. Kang ◽  
A.K. Bhandari ◽  
D.S. Cannom

2013 ◽  
Vol 24 (6) ◽  
pp. 617-623 ◽  
Author(s):  
PETER LEONG-SIT ◽  
MELISSA ROBINSON ◽  
ERICA S. ZADO ◽  
DAVID J. CALLANS ◽  
FERMIN GARCIA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document