scholarly journals An optimized, fast-to-perform mouse lung infection model with the human pathogenChlamydia trachomatisforin vivoscreening of antibiotics, vaccine candidates and modified host–pathogen interactions

2015 ◽  
Vol 74 (2) ◽  
pp. ftv120 ◽  
Author(s):  
Pavel Dutow ◽  
Lea Wask ◽  
Miriam Bothe ◽  
Beate Fehlhaber ◽  
Robert Laudeley ◽  
...  
Apmis ◽  
2009 ◽  
Vol 117 (2) ◽  
pp. 95-107 ◽  
Author(s):  
CLAUS MOSER ◽  
MARIA VAN GENNIP ◽  
THOMAS BJARNSHOLT ◽  
PETER ØSTRUP JENSEN ◽  
BAOLERI LEE ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Yu Zhang ◽  
Lina Song ◽  
Lie Hou ◽  
Zhengfeng Cao ◽  
Wanwipa Vongsangnak ◽  
...  

Salmonella enteritidis (SE) is a pathogen that can readily infect ovarian tissues and colonize the granulosa cell layer such that it can be transmitted via eggs from infected poultry to humans in whom it can cause food poisoning. Ducks are an important egg-laying species that are susceptible to SE infection, yet the host–pathogen interactions between SE and ducks have not been thoroughly studied to date. Herein, we performed dual RNA-sequencing analyses of these two organisms in a time-resolved infection model of duck granulosa cells (dGCs) by SE. In total, 10,510 genes were significantly differentially expressed in host dGCs, and 265 genes were differentially expressed in SE over the course of infection. These differentially expressed genes (DEGs) of dGCs were enriched in the cytokine–cytokine receptor interaction pathway via KEGG analyses, and the DEGs in SE were enriched in the two-component system, bacterial secretion system, and metabolism of pathogen factors pathways as determined. A subsequent weighted gene co-expression network analysis revealed that the cytokine–cytokine receptor interaction pathway is mostly enriched at 6 h post-infection (hpi). Moreover, a number of pathogenic factors identified in the pathogen–host interaction database (PHI-base) are upregulated in SE, including genes encoding the pathogenicity island/component, type III secretion, and regulators of systemic infection. Furthermore, an intracellular network associated with the regulation of SE infection in ducks was constructed, and 16 cytokine response-related dGCs DEGs (including IL15, CD40, and CCR7) and 17 pathogenesis-related factors (including sseL, ompR, and fliC) were identified, respectively. Overall, these results not only offer new insights into the mechanisms underlying host–pathogen interactions between SE and ducks, but they may also aid in the selection of potential targets for antimicrobial drug development.


BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Jonas Kjellin ◽  
Maria Pränting ◽  
Frauke Bach ◽  
Roshan Vaid ◽  
Bart Edelbroek ◽  
...  

Abstract Background During infection by intracellular pathogens, a highly complex interplay occurs between the infected cell trying to degrade the invader and the pathogen which actively manipulates the host cell to enable survival and proliferation. Many intracellular pathogens pose important threats to human health and major efforts have been undertaken to better understand the host-pathogen interactions that eventually determine the outcome of the infection. Over the last decades, the unicellular eukaryote Dictyostelium discoideum has become an established infection model, serving as a surrogate macrophage that can be infected with a wide range of intracellular pathogens. In this study, we use high-throughput RNA-sequencing to analyze the transcriptional response of D. discoideum when infected with Mycobacterium marinum and Legionella pneumophila. The results were compared to available data from human macrophages. Results The majority of the transcriptional regulation triggered by the two pathogens was found to be unique for each bacterial challenge. Hallmark transcriptional signatures were identified for each infection, e.g. induction of endosomal sorting complexes required for transport (ESCRT) and autophagy genes in response to M. marinum and inhibition of genes associated with the translation machinery and energy metabolism in response to L. pneumophila. However, a common response to the pathogenic bacteria was also identified, which was not induced by non-pathogenic food bacteria. Finally, comparison with available data sets of regulation in human monocyte derived macrophages shows that the elicited response in D. discoideum is in many aspects similar to what has been observed in human immune cells in response to Mycobacterium tuberculosis and L. pneumophila. Conclusions Our study presents high-throughput characterization of D. discoideum transcriptional response to intracellular pathogens using RNA-seq. We demonstrate that the transcriptional response is in essence distinct to each pathogen and that in many cases, the corresponding regulation is recapitulated in human macrophages after infection by mycobacteria and L. pneumophila. This indicates that host-pathogen interactions are evolutionary conserved, derived from the early interactions between free-living phagocytic cells and bacteria. Taken together, our results strengthen the use of D. discoideum as a general infection model.


2006 ◽  
Vol 50 (3) ◽  
pp. 1122-1122
Author(s):  
Yuichi Fukuda ◽  
Katsunori Yanagihara ◽  
Hideaki Ohno ◽  
Yasuhito Higashiyama ◽  
Yoshitsugu Miyazaki ◽  
...  

2011 ◽  
Vol 79 (8) ◽  
pp. 3366-3376 ◽  
Author(s):  
Charles V. Rosadini ◽  
Jeffrey D. Gawronski ◽  
Daniel Raimunda ◽  
José M. Argüello ◽  
Brian J. Akerley

ABSTRACTNontypeableHaemophilus influenzae(NTHI) is a Gram-negative bacterial pathogen that causes upper and lower respiratory infections. Factors required for pulmonary infection by NTHI are not well understood. Previously, using high-throughput insertion tracking by deep sequencing (HITS), putative lung colonization factors were identified. Also, previous research indicates that secreted disulfide-dependent factors are important for virulence ofH. influenzae. In the present study, HITS data were compared with an informatics-based list of putative substrates of the periplasmic oxidoreductase DsbA to find and characterize secreted virulence factors. This analysis resulted in identification of the “zinc bindingessential forvirulence” (zev) locus consisting ofzevA(HI1249) andzevB(HI1248). NTHI mutants ofzevAandzevBgrew normally in rich medium but were defective for colonization in a mouse lung model. Mutants also exhibited severe growth defects in medium containing EDTA and were rescued by supplementation with zinc. Additionally, purified recombinant ZevA was found to bind to zinc with high affinity. Together, these data demonstrate thatzevABis a novel virulence factor important for zinc utilization ofH. influenzaeunder conditions where zinc is limiting. Furthermore, evidence presented here suggests that zinc limitation is likely an important mechanism for host defense against pathogens during lung infection.


2014 ◽  
Vol 172 (1-2) ◽  
pp. 256-264 ◽  
Author(s):  
Patricia González-Iglesias ◽  
Mariela Scortti ◽  
Iain MacArthur ◽  
Alexia Hapeshi ◽  
Héctor Rodriguez ◽  
...  

Pathogens ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 82 ◽  
Author(s):  
Yenehiwot Weldearegay ◽  
Sandy Müller ◽  
Jana Hänske ◽  
Anja Schulze ◽  
Aline Kostka ◽  
...  

Respiratory infections caused by mycoplasma species in ruminants lead to considerable economic losses. Two important ruminant pathogens are Mycoplasma mycoides subsp. Mycoides (Mmm), the aetiological agent of contagious bovine pleuropneumonia and Mycoplasma mycoides subsp. capri (Mmc), which causes pneumonia, mastitis, arthritis, keratitis, and septicemia in goats. We established precision cut lung slices (PCLS) infection model for Mmm and Mmc to study host-pathogen interactions. We monitored infection over time using immunohistological analysis and electron microscopy. Moreover, infection burden was monitored by plating and quantitative real-time PCR. Results were compared with lungs from experimentally infected goats and cattle. Lungs from healthy goats and cattle were also included as controls. PCLS remained viable for up to two weeks. Both subspecies adhered to ciliated cells. However, the titer of Mmm in caprine PCLS decreased over time, indicating species specificity of Mmm. Mmc showed higher tropism to sub-bronchiolar tissue in caprine PCLS, which increased in a time-dependent manner. Moreover, Mmc was abundantly observed on pulmonary endothelial cells, indicating partially, how it causes systemic disease. Tissue destruction upon prolonged infection of slices was comparable to the in vivo samples. Therefore, PCLS represents a novel ex vivo model to study host-pathogen interaction in livestock mycoplasma.


2016 ◽  
Vol 61 (3) ◽  
Author(s):  
Yu-Wei Lin ◽  
Qi Tony Zhou ◽  
Soon-Ee Cheah ◽  
Jinxin Zhao ◽  
Ke Chen ◽  
...  

ABSTRACT Colistin is often administered by inhalation and/or the parenteral route for the treatment of respiratory infections caused by multidrug-resistant (MDR) Pseudomonas aeruginosa. However, limited pharmacokinetic (PK) and pharmacodynamic (PD) data are available to guide the optimization of dosage regimens of inhaled colistin. In the present study, PK of colistin in epithelial lining fluid (ELF) and plasma was determined following intratracheal delivery of a single dose of colistin solution in neutropenic lung-infected mice. The antimicrobial efficacy of intratracheal delivery of colistin against three P. aeruginosa strains (ATCC 27853, PAO1, and FADDI-PA022; MIC of 1 mg/liter for all strains) was examined in a neutropenic mouse lung infection model. Dose fractionation studies were conducted over 2.64 to 23.8 mg/kg of body weight/day. The inhibitory sigmoid model was employed to determine the PK/PD index that best described the antimicrobial efficacy of pulmonary delivery of colistin. In both ELF and plasma, the ratio of the area under the unbound concentration-time profile to MIC (fAUC/MIC) was the PK/PD index that best described the antimicrobial effect in mouse lung infection (R 2 = 0.60 to 0.84 for ELF and 0.64 to 0.83 for plasma). The fAUC/MIC targets required to achieve stasis against the three strains were 684 to 1,050 in ELF and 2.15 to 3.29 in plasma. The histopathological data showed that pulmonary delivery of colistin reduced infection-caused pulmonary inflammation and preserved the integrity of the lung epithelium, although colistin introduced mild pulmonary inflammation in healthy mice. This study showed pulmonary delivery of colistin provides antimicrobial effects against MDR P. aeruginosa lung infections superior to those of parenteral administrations. For the first time, our results provide important preclinical PK/PD information for optimization of inhaled colistin therapy.


2015 ◽  
Vol 89 (7) ◽  
pp. 3659-3670 ◽  
Author(s):  
Anurodh Shankar Agrawal ◽  
Tania Garron ◽  
Xinrong Tao ◽  
Bi-Hung Peng ◽  
Maki Wakamiya ◽  
...  

ABSTRACTThe emergence of Middle East respiratory syndrome-coronavirus (MERS-CoV) in the Middle East since 2012 has caused more than 900 human infections with ∼40% mortality to date. Animal models are needed for studying pathogenesis and for development of preventive and therapeutic agents against MERS-CoV infection. Nonhuman primates (rhesus macaques and marmosets) are expensive models of limited availability. Although a mouse lung infection model has been described using adenovirus vectors expressing human CD26/dipeptidyl peptidase 4 (DPP4), it is believed that a transgenic mouse model is needed for MERS-CoV research. We have developed this transgenic mouse model as indicated in this study. We show that transgenic mice globally expressing hCD26/DPP4 were fully permissive to MERS-CoV infection, resulting in relentless weight loss and death within days postinfection. High infectious virus titers were recovered primarily from the lungs and brains of mice at 2 and 4 days postinfection, respectively, whereas viral RNAs were also detected in the heart, spleen, and intestine, indicating a disseminating viral infection. Infected Tg+mice developed a progressive pneumonia, characterized by extensive inflammatory infiltration. In contrast, an inconsistent mild perivascular cuffing was the only pathological change associated with the infected brains. Moreover, infected Tg+mice were able to activate genes encoding for many antiviral and inflammatory mediators within the lungs and brains, coinciding with the high levels of viral replication. This new and unique transgenic mouse model will be useful for furthering knowledge of MERS pathogenesis and for the development of vaccine and treatments against MERS-CoV infection.IMPORTANCESmall and economical animal models are required for the controlled and extensive studies needed for elucidating pathogenesis and development of vaccines and antivirals against MERS. Mice are the most desirable small-animal species for this purpose because of availability and the existence of a thorough knowledge base, particularly of genetics and immunology. The standard small animals, mice, hamsters, and ferrets, all lack the functional MERS-CoV receptor and are not susceptible to infection. So, initial studies were done with nonhuman primates, expensive models of limited availability. A mouse lung infection model was described where a mouse adenovirus was used to transfect lung cells for receptor expression. Nevertheless, all generally agree that a transgenic mouse model expressing the DPP4 receptor is needed for MERS-CoV research. We have developed this transgenic mouse model as indicated in this study. This new and unique transgenic mouse model will be useful for furthering MERS research.


Sign in / Sign up

Export Citation Format

Share Document