zebrafish infection
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 7)

H-INDEX

12
(FIVE YEARS 0)

Author(s):  
Eva Habjan ◽  
Vien Q. T. Ho ◽  
James Gallant ◽  
Gunny Van Stempvoort ◽  
Kin Ki Jim ◽  
...  

Finding new anti-tuberculosis compounds with convincing in vivo activity is an ongoing global challenge to fight the emergence of multi-drug resistant Mycobacterium tuberculosis isolates. In this work, we exploited the medium-throughput capabilities of the zebrafish embryo infection model with Mycobacterium marinum as a surrogate for M. tuberculosis. Using a representative set of clinically established drugs, we demonstrate that this model could be predictive and selective for antibiotics that can be administered orally. We further used the zebrafish-infection model to screen 240 compounds from an anti-TB hit library for their in vivo activity and identified 14 highly active compounds. One of the most active compounds was the tetracyclic compound TBA161, which was studied in more detail. Analysis of resistant mutants revealed point mutations in aspS (rv2572c), encoding an aspartyl-tRNA synthetase. The target was genetically confirmed, and molecular docking studies propose possible binding of TBA161 in a pocket adjacent to the catalytic site. This study showed that the zebrafish-infection model is suitable to rapidly identify promising scaffolds with in vivo activity.


2021 ◽  
Vol 1232 ◽  
pp. 130006
Author(s):  
Nevena Lj Stevanović ◽  
Biljana Đ. Glišić ◽  
Sandra Vojnovic ◽  
Hubert Wadepohl ◽  
Tina P. Andrejević ◽  
...  

Antibiotics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 96
Author(s):  
Md Saruar Bhuiyan ◽  
Jhih-Hang Jiang ◽  
Xenia Kostoulias ◽  
Ravali Theegala ◽  
Graham J. Lieschke ◽  
...  

Daptomycin is an important antibiotic for the treatment of infections caused by Staphylococcus aureus. The emergence of daptomycin resistance in S. aureus is associated with treatment failure and persistent infections with poor clinical outcomes. Here, we investigated host innate immune responses against clinically derived, daptomycin-resistant (DAP-R) and -susceptible S. aureus paired isolates using a zebrafish infection model. We showed that the control of DAP-R S. aureus infections was attenuated in vivo due to cross-resistance to host cationic antimicrobial peptides. These data provide mechanistic understanding into persistent infections caused by DAP-R S. aureus and provide crucial insights into the adaptive evolution of this troublesome pathogen.


2020 ◽  
Vol 19 (8) ◽  
pp. 1731-1736
Author(s):  
Huirong Li ◽  
Wei Jiang ◽  
Xiaoshuang He ◽  
Mengting Chen

Purpose: To investigate the synergistic antimicrobial effects of ciprofloxacin and D-tyrosine against drug-resistant bacteria.Method: The antimicrobial effects of ciprofloxacin and D-tyrosine on clinical isolates of multidrugresistant (MDR) Pseudomonas aeruginosa (P. aeruginosa) no. 3556 were determined in vitro based on time-kill curve, and in vivo in P. aeruginosa-zebrafish infection model. Furthermore, 30 clinical isolates of multidrug-resistant P. aeruginosa were used in vitro to ascertain the synergistic effect of the two agents.Results: Combined use of ciprofloxacin and D-tyrosine produced synergistic effects against the clinical isolate of P. aeruginosa no. 3556 in vitro and in vivo. Synergism occurred in 96.67 % (95 % CI, range 83.33 - 99.41 %) of the clinical isolates, and ciprofloxacin dose was reduced in 90 % (95 % CI, range 74.38 - 96.54 %) of the clinical isolates in vitro.Conclusion: These preliminary results suggest that the combination of ciprofloxacin and D-tyrosine is a promising therapeutic strategy against MDR P. aeruginosa infections. Keywords: Ciprofloxacin, D-tyrosine, Synergistic, P. aeruginosa, Zebrafish infection model, Time-killing curve


2020 ◽  
Vol 8 (9) ◽  
pp. 1361
Author(s):  
Kar Yan Soh ◽  
Jacelyn Mei San Loh ◽  
Christopher Hall ◽  
Thomas Proft

Streptococcus iniae is a major fish pathogen that contributes to large annual losses in the aquaculture industry, exceeding US$100 million. It is also reported to cause opportunistic infections in humans. We have recently identified two novel S. iniae virulence factors, an extracellular nuclease (SpnAi) and a secreted nucleotidase (S5nAi), and verified their predicted enzymatic activities using recombinant proteins. Here, we report the generation of green fluorescent S. iniae spnAi and s5nAi deletion mutants and their evaluation in a transgenic zebrafish infection model. Our results show nuclease and nucleotidase activities in S. iniae could be attributed to SpnAi and S5nAi, respectively. Consistent with this, larvae infected with the deletion mutants demonstrated enhanced survival and bacterial clearance, compared to those infected with wild-type (WT) S. iniae. Deletion of spnAi and s5nAi resulted in sustained recruitment of neutrophils and macrophages, respectively, to the site of infection. We also show that recombinant SpnAi is able to degrade neutrophil extracellular traps (NETs) isolated from zebrafish kidney tissue. Our results suggest that both enzymes play an important role in S. iniae immune evasion and might present potential targets for the development of therapeutic agents or vaccines.


Author(s):  
Junkai Li ◽  
Can M. Ünal ◽  
Kazuhiko Namikawa ◽  
Michael Steinert ◽  
Reinhard W. Köster

Lab Animal ◽  
2019 ◽  
Vol 48 (10) ◽  
pp. 284-287
Author(s):  
Vincenzo Torraca ◽  
Margarida C. Gomes ◽  
Milka Sarris ◽  
Serge Mostowy

2018 ◽  
Vol 88 ◽  
pp. 169-172 ◽  
Author(s):  
Matt D. Johansen ◽  
Joshua A. Kasparian ◽  
Elinor Hortle ◽  
Warwick J. Britton ◽  
Auriol C. Purdie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document