scholarly journals Dual Transcriptomic Analyses Unveil Host–Pathogen Interactions Between Salmonella enterica Serovar Enteritidis and Laying Ducks (Anas platyrhynchos)

2021 ◽  
Vol 12 ◽  
Author(s):  
Yu Zhang ◽  
Lina Song ◽  
Lie Hou ◽  
Zhengfeng Cao ◽  
Wanwipa Vongsangnak ◽  
...  

Salmonella enteritidis (SE) is a pathogen that can readily infect ovarian tissues and colonize the granulosa cell layer such that it can be transmitted via eggs from infected poultry to humans in whom it can cause food poisoning. Ducks are an important egg-laying species that are susceptible to SE infection, yet the host–pathogen interactions between SE and ducks have not been thoroughly studied to date. Herein, we performed dual RNA-sequencing analyses of these two organisms in a time-resolved infection model of duck granulosa cells (dGCs) by SE. In total, 10,510 genes were significantly differentially expressed in host dGCs, and 265 genes were differentially expressed in SE over the course of infection. These differentially expressed genes (DEGs) of dGCs were enriched in the cytokine–cytokine receptor interaction pathway via KEGG analyses, and the DEGs in SE were enriched in the two-component system, bacterial secretion system, and metabolism of pathogen factors pathways as determined. A subsequent weighted gene co-expression network analysis revealed that the cytokine–cytokine receptor interaction pathway is mostly enriched at 6 h post-infection (hpi). Moreover, a number of pathogenic factors identified in the pathogen–host interaction database (PHI-base) are upregulated in SE, including genes encoding the pathogenicity island/component, type III secretion, and regulators of systemic infection. Furthermore, an intracellular network associated with the regulation of SE infection in ducks was constructed, and 16 cytokine response-related dGCs DEGs (including IL15, CD40, and CCR7) and 17 pathogenesis-related factors (including sseL, ompR, and fliC) were identified, respectively. Overall, these results not only offer new insights into the mechanisms underlying host–pathogen interactions between SE and ducks, but they may also aid in the selection of potential targets for antimicrobial drug development.

BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Jonas Kjellin ◽  
Maria Pränting ◽  
Frauke Bach ◽  
Roshan Vaid ◽  
Bart Edelbroek ◽  
...  

Abstract Background During infection by intracellular pathogens, a highly complex interplay occurs between the infected cell trying to degrade the invader and the pathogen which actively manipulates the host cell to enable survival and proliferation. Many intracellular pathogens pose important threats to human health and major efforts have been undertaken to better understand the host-pathogen interactions that eventually determine the outcome of the infection. Over the last decades, the unicellular eukaryote Dictyostelium discoideum has become an established infection model, serving as a surrogate macrophage that can be infected with a wide range of intracellular pathogens. In this study, we use high-throughput RNA-sequencing to analyze the transcriptional response of D. discoideum when infected with Mycobacterium marinum and Legionella pneumophila. The results were compared to available data from human macrophages. Results The majority of the transcriptional regulation triggered by the two pathogens was found to be unique for each bacterial challenge. Hallmark transcriptional signatures were identified for each infection, e.g. induction of endosomal sorting complexes required for transport (ESCRT) and autophagy genes in response to M. marinum and inhibition of genes associated with the translation machinery and energy metabolism in response to L. pneumophila. However, a common response to the pathogenic bacteria was also identified, which was not induced by non-pathogenic food bacteria. Finally, comparison with available data sets of regulation in human monocyte derived macrophages shows that the elicited response in D. discoideum is in many aspects similar to what has been observed in human immune cells in response to Mycobacterium tuberculosis and L. pneumophila. Conclusions Our study presents high-throughput characterization of D. discoideum transcriptional response to intracellular pathogens using RNA-seq. We demonstrate that the transcriptional response is in essence distinct to each pathogen and that in many cases, the corresponding regulation is recapitulated in human macrophages after infection by mycobacteria and L. pneumophila. This indicates that host-pathogen interactions are evolutionary conserved, derived from the early interactions between free-living phagocytic cells and bacteria. Taken together, our results strengthen the use of D. discoideum as a general infection model.


Genome ◽  
2017 ◽  
Vol 60 (12) ◽  
pp. 1021-1028 ◽  
Author(s):  
M.H. Ye ◽  
H. Bao ◽  
Y. Meng ◽  
L.L. Guan ◽  
P. Stothard ◽  
...  

While some research has looked into the host genetic response in pigs challenged with specific viruses or bacteria, few studies have explored the expression changes of transcripts in the peripheral blood of sick pigs that may be infected with multiple pathogens on farms. In this study, the architecture of the peripheral blood transcriptome of 64 Duroc sired commercial pigs, including 18 healthy animals at entry to a growing facility (set as a control) and 23 pairs of samples from healthy and sick pen mates, was generated using RNA-Seq technology. In total, 246 differentially expressed genes were identified to be specific to the sick animals. Functional enrichment analysis for those genes revealed that the over-represented gene ontology terms for the biological processes category were exclusively immune activity related. The cytokine–cytokine receptor interaction pathway was significantly enriched. Nine functional genes from this pathway encoding members (as well as their receptors) of the interleukins, chemokines, tumor necrosis factors, colony stimulating factors, activins, and interferons exhibited significant transcriptional alteration in sick animals. Our results suggest a subset of novel marker genes that may be useful candidate genes in the evaluation and prediction of health status in pigs under commercial production conditions.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Siyu Guo ◽  
Zhihong Huang ◽  
Xinkui Liu ◽  
Jingyuan Zhang ◽  
Peizhi Ye ◽  
...  

Acute coronary syndrome (ACS) is a complex syndrome of clinical symptoms. In order to accurately diagnose the type of disease in ACS patients, this study is aimed at exploring the differentially expressed genes (DEGs) and biological pathways between acute myocardial infarction (AMI) and unstable angina (UA). The GSE29111 and GSE60993 datasets containing microarray data from AMI and UA patients were downloaded from the Gene Expression Omnibus (GEO) database. DEG analysis of these 2 datasets is performed using the “limma” package in R software. DEGs were also analyzed using protein-protein interaction (PPI), Molecular Complex Detection (MCODE) algorithm, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Correlation analysis and “cytoHubba” were used to analyze the hub genes. A total of 286 DEGs were obtained from GSE29111 and GSE60993, including 132 upregulated genes and 154 downregulated genes. Subsequent comprehensive analysis identified 20 key genes that may be related to the occurrence and development of AMI and UA and were involved in the inflammatory response, interaction of neuroactive ligand-receptor, calcium signaling pathway, inflammatory mediator regulation of TRP channels, viral protein interaction with cytokine and cytokine receptor, human cytomegalovirus infection, and cytokine-cytokine receptor interaction pathway. The integrated bioinformatical analysis could improve our understanding of DEGs between AMI and UA. The results of this study might provide a new perspective and reference for the early diagnosis and treatment of ACS.


2021 ◽  
Author(s):  
Yu Liu ◽  
Jundong Wang ◽  
wencheng Chi ◽  
Jing Xie ◽  
LaiKuan Teh ◽  
...  

Abstract Objective: Bioinformatics technology was used in this study to analyze the expression data of patients with diabetic nephropathy (DN) and normal subjects from the microarray. The purpose of this study was to screen the differentially expressed genes in DN and to explore the pathogenesis and potential therapeutic targets of DN. Methods: The data of gene expression in the gse142153 gene chip was downloaded from the gene expression database (GEO). The up-regulated and down-regulated expressed genes were analyzed by R language. The core genes of differentially expressed genes were analyzed by string database, Cytoscape software and its plug-in. The differentially expressed genes were analyzed by gene ontology and Kyoto Encyclopedia of genes and genomes. Results: A total of 112 differentially expressed genes were screened, including 50 down-regulated genes and 62 up-regulated genes. There are 10 up-regulated core genes including CXCL8, MMP9, IL1B, IL6, IL10, CXCL2, CCL20, ATF3, CXCL3, F3. Their biological effects are mainly concentrated in the IL-17 signaling pathway, rheumatoid arthritis, viral protein interaction with cytokine and cytokine receptor, Amoebiasis, TNF signaling pathway, Legionellosis, Cytokine-cytokine receptor interaction, Lipid, and atherosclerosis, Malaria, NOD-like receptor signaling pathway, etc. Conclusion: Analysis of differentially expressed genes and core genes enhanced the understanding of the pathogenesis of DN and provided a potential train of thought for the treatment of DN.


Apmis ◽  
2009 ◽  
Vol 117 (2) ◽  
pp. 95-107 ◽  
Author(s):  
CLAUS MOSER ◽  
MARIA VAN GENNIP ◽  
THOMAS BJARNSHOLT ◽  
PETER ØSTRUP JENSEN ◽  
BAOLERI LEE ◽  
...  

Pathogens ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 82 ◽  
Author(s):  
Yenehiwot Weldearegay ◽  
Sandy Müller ◽  
Jana Hänske ◽  
Anja Schulze ◽  
Aline Kostka ◽  
...  

Respiratory infections caused by mycoplasma species in ruminants lead to considerable economic losses. Two important ruminant pathogens are Mycoplasma mycoides subsp. Mycoides (Mmm), the aetiological agent of contagious bovine pleuropneumonia and Mycoplasma mycoides subsp. capri (Mmc), which causes pneumonia, mastitis, arthritis, keratitis, and septicemia in goats. We established precision cut lung slices (PCLS) infection model for Mmm and Mmc to study host-pathogen interactions. We monitored infection over time using immunohistological analysis and electron microscopy. Moreover, infection burden was monitored by plating and quantitative real-time PCR. Results were compared with lungs from experimentally infected goats and cattle. Lungs from healthy goats and cattle were also included as controls. PCLS remained viable for up to two weeks. Both subspecies adhered to ciliated cells. However, the titer of Mmm in caprine PCLS decreased over time, indicating species specificity of Mmm. Mmc showed higher tropism to sub-bronchiolar tissue in caprine PCLS, which increased in a time-dependent manner. Moreover, Mmc was abundantly observed on pulmonary endothelial cells, indicating partially, how it causes systemic disease. Tissue destruction upon prolonged infection of slices was comparable to the in vivo samples. Therefore, PCLS represents a novel ex vivo model to study host-pathogen interaction in livestock mycoplasma.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hugo F. Perini ◽  
Alane T. P. Moralez ◽  
Ricardo S. C. Almeida ◽  
Luciano A. Panagio ◽  
Admilton O. G. Junior ◽  
...  

Animals ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 90
Author(s):  
Yingping Wu ◽  
Xiaoyu Zhao ◽  
Li Chen ◽  
Junhua Wang ◽  
Yuqing Duan ◽  
...  

The study was conducted to investigate the transcriptomic differences of the hypothalamic-pituitary-gonadal axis between Xinjiang Yili geese with high and low egg production and to find candidate genes regulating the egg production of Xinjiang Yili geese. The 8 selected Xinjiang Yili Geese with high or low egg production (4 for each group) were 3 years old, with good health, and under the same feeding condition. High-throughput sequencing technology was used to sequence cDNA libraries of the hypothalami, pituitary glands, and ovaries. The sequencing data were compared and analyzed, and the transcripts with significant differences were identified and analyzed with bioinformatics. The study showed that the transcriptome sequencing data of the 24 samples contained a total of 1,176,496,146 valid reads and 176.47 gigabase data. Differential expression analyses identified 135, 56, and 331 genes in the hypothalami, pituitary glands, and ovaries of Xinjiang Yili geese with high and low egg production. Further annotation of these differentially expressed genes in the non-redundant protein sequence database (Nr) revealed that 98, 52, and 309 genes were annotated, respectively. Through the annotations of GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) databases, 30 candidate genes related to the egg production of Xinjiang Yili geese were preliminarily selected. The gap junction, focal adhesion, and ECM-receptor interaction signaling pathways were enriched with the hypothalamic, pituitary, and ovarian differentially expressed genes, and the calcium signaling pathway was enriched with the pituitary and ovarian differentially expressed genes. Thus, these pathways in the hypothalamic-pituitary-gonadal axis may play an important role in regulating egg production of Xinjiang Yili geese. The results provided the transcriptomic information of the hypothalamic-pituitary-gonadal axis of Xinjiang Yili geese and laid the theoretical basis for revealing the molecular mechanisms regulating the egg-laying traits of Xinjiang Yili geese.


Sign in / Sign up

Export Citation Format

Share Document