scholarly journals Estimation of stem volume using laser scanning-based canopy height metrics

2006 ◽  
Vol 79 (2) ◽  
pp. 217-229 ◽  
Author(s):  
Matti Maltamo ◽  
Kalle Eerikäinen ◽  
Petteri Packalén ◽  
Juha Hyyppä
Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 856
Author(s):  
Juha Hyyppä ◽  
Xiaowei Yu ◽  
Teemu Hakala ◽  
Harri Kaartinen ◽  
Antero Kukko ◽  
...  

The automation of forest field reference data collection has been an intensive research objective for laser scanning scientists ever since the invention of terrestrial laser scanning more than two decades ago. In this study, we demonstrated that an under-canopy UAV laser scanning system utilizing a rotating laser scanner can alone provide accurate estimates of canopy height and stem volume for the majority of trees in a boreal forest. We mounted a rotating laser scanner based on a Velodyne VLP-16 sensor onboard a manually piloted UAV. The UAV was commanded with the help of a live video feed from the onboard camera. Since the system was based on a rotating laser scanner providing varying view angles, all important elements such as treetops, branches, trunks, and ground could be recorded with laser hits. In an experiment including two different forest structures, namely sparse and obstructed canopy, we showed that our system can measure the heights of individual trees with a bias of −20 cm and a standard error of 40 cm in the sparse forest and with a bias of −65 cm and a standard error of 1 m in the obstructed forest. The accuracy of the obtained tree height estimates was equivalent to airborne above-canopy UAV surveys conducted in similar forest conditions or even at the same sites. The higher underestimation and higher inaccuracy in the obstructed site can be attributed to three trees with a height exceeding 25 m and the reduced point density of these tree tops due to occlusion and the limited ranging capacity of the scanner. Additionally, we used our system to estimate the stem volumes of individual trees with a standard error at the level of 10%. This level of error is equivalent to the error obtained when merging above-canopy UAV laser scanner data with terrestrial point cloud data. The results show that we do not necessarily need a combination of terrestrial point clouds and point clouds collected using above-canopy UAV systems in order to accurately estimate the heights and the volumes of individual trees in reference data collection.


Author(s):  
Juha Hyyppä ◽  
Xiaowei Yu ◽  
Teemu Hakala ◽  
Harri Kaartinen ◽  
Antero Kukko ◽  
...  

Automation of forest field reference data collection has been an intensive research objective for laser scanning scientists ever since the invention of terrestrial laser scanning more than two decades ago. Recently, it has been proposed that such automated data collection providing both the tree heights and stem curves would require a combination of above-canopy UAV point clouds and terrestrial point clouds. In this study, we demonstrate that an under-canopy UAV laser scanning system utilizing a rotating laser scanner can alone provide accurate estimates of the canopy height and the stem volume for the majority of the trees in a boreal forest. To this end, we mounted a rotating laser scanner based on a Velodyne VLP-16 sensor onboard a manually piloted UAV. The UAV was commanded with the help of a live video feed from the onboard camera of the UAV. Since the system was based on a rotating laser scanner providing varying view angles, all important elements such as treetops, branches, trunks, and ground could be recorded with laser hits. In an experiment including two different forest structures, namely sparse and obstructed canopy, we showed that our system can measure the heights of individual trees with a bias of -20 cm and a standard error of 40 cm in the sparse forest and with a bias of -65 cm and a standard error of 1 m in the obstructed forest. The accuracy of the obtained tree height estimates was equivalent to airborne above-canopy UAV surveys conducted in similar forest conditions. The higher underestimation and higher inaccuracy in the obstructed site can be attributed to three trees with a height exceeding 25 m and the applied laser scanning system VLP-16 that had a limited height measurement capacity when it comes to trees taller than 25 m. Additionally, we used our system to estimate the stem volumes of individual trees with a standard error at the level of 10%. This level of error is equivalent to the error obtained when merging above-canopy UAV laser scanner data with terrestrial point cloud data. Future research is needed for testing new sensors, for implementing autonomous operation inside canopies through collision avoidance and navigation through canopies, and for developing robust methods that work also with more complex forest structure. The results show that we do not necessarily need a combination of terrestrial point clouds and point clouds collected using above-canopy UAV systems in order to accurately estimate the heights and the volumes of individual trees.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 835
Author(s):  
Ville Luoma ◽  
Tuomas Yrttimaa ◽  
Ville Kankare ◽  
Ninni Saarinen ◽  
Jiri Pyörälä ◽  
...  

Tree growth is a multidimensional process that is affected by several factors. There is a continuous demand for improved information on tree growth and the ecological traits controlling it. This study aims at providing new approaches to improve ecological understanding of tree growth by the means of terrestrial laser scanning (TLS). Changes in tree stem form and stem volume allocation were investigated during a five-year monitoring period. In total, a selection of attributes from 736 trees from 37 sample plots representing different forest structures were extracted from taper curves derived from two-date TLS point clouds. The results of this study showed the capability of point cloud-based methods in detecting changes in the stem form and volume allocation. In addition, the results showed a significant difference between different forest structures in how relative stem volume and logwood volume increased during the monitoring period. Along with contributing to providing more accurate information for monitoring purposes in general, the findings of this study showed the ability and many possibilities of point cloud-based method to characterize changes in living organisms in particular, which further promote the feasibility of using point clouds as an observation method also in ecological studies.


2021 ◽  
Vol 13 (12) ◽  
pp. 2239
Author(s):  
Ying Quan ◽  
Mingze Li ◽  
Yuanshuo Hao ◽  
Bin Wang

As a common form of light detection and ranging (LiDAR) in forestry applications, the canopy height model (CHM) provides the elevation distribution of aboveground vegetation. A CHM is traditionally generated by interpolating all the first LiDAR echoes. However, the first echo cannot accurately represent the canopy surface, and the resulting large amount of noise (data pits) also reduce the CHM quality. Although previous studies concentrate on many pit-filling methods, the applicability of these methods in high-resolution unmanned aerial vehicle laser scanning (UAVLS)-derived CHMs has not been revealed. This study selected eight widely used, recently developed, representative pit-filling methods, namely first-echo interpolation, smooth filtering (mean, medium and Gaussian), highest point interpolation, pit-free algorithm, spike-free algorithm and graph-based progressive morphological filtering (GPMF). A comprehensive evaluation framework was implemented, including a quantitative evaluation using simulation data and an additional application evaluation using UAVLS data. The results indicated that the spike-free algorithm and GPMF had excellent visual performances and were closest to the real canopy surface (root mean square error (RMSE) of simulated data were 0.1578 m and 0.1093 m, respectively; RMSE of UAVLS data were 0.3179 m and 0.4379 m, respectively). Compared with the first-echo method, the accuracies of the spike-free algorithm and GPMF improved by approximately 23% and 22%, respectively. The pit-free algorithm and highest point interpolation method also have advantages in high-resolution CHM generation. The global smooth filter method based on the first-echo CHM reduced the average canopy height by approximately 7.73%. Coniferous forests require more pit-filling than broad-leaved forests and mixed forests. Although the results of individual tree applications indicated that there was no significant difference between these methods except the median filter method, pit-filling is still of great significance for generating high-resolution CHMs. This study provides guidance for using high-resolution UAVLS in forestry applications.


2019 ◽  
Vol 93 (1) ◽  
pp. 150-162 ◽  
Author(s):  
Stefano Puliti ◽  
Jonathan P Dash ◽  
Michael S Watt ◽  
Johannes Breidenbach ◽  
Grant D Pearse

Abstract This study addresses the use of multiple sources of auxiliary data from unmanned aerial vehicles (UAVs) and airborne laser scanning (ALS) data for inference on key biophysical parameters in small forest properties (5–300 ha). We compared the precision of the estimates using plot data alone under a design-based inference with model-based estimates that include plot data and the following four types of auxiliary data: (1) terrain-independent variables from UAV photogrammetric data (UAV-SfM); (2) variables obtained from UAV photogrammetric data normalized using external terrain data (UAV-SfMDTM); (3) UAV-LS and (4) ALS data. The inclusion of remotely sensed data increased the precision of DB estimates by factors of 1.5–2.2. The optimal data sources for top height, stem density, basal area and total stem volume were: UAV-LS, UAV-SfM, UAV-SfMDTM and UAV-SfMDTM. We conclude that the use of UAV data can increase the precision of stand-level estimates even under intensive field sampling conditions.


2020 ◽  
Vol 12 (23) ◽  
pp. 3948
Author(s):  
Markus Adam ◽  
Mikhail Urbazaev ◽  
Clémence Dubois ◽  
Christiane Schmullius

Lidar remote sensing has proven to be a powerful tool for estimating ground elevation, canopy height, and additional vegetation parameters, which in turn are valuable information for the investigation of ecosystems. Spaceborne lidar systems, like the Global Ecosystem Dynamics Investigation (GEDI), can deliver these height estimates on a near global scale. This paper analyzes the accuracy of the first version of GEDI ground elevation and canopy height estimates in two study areas with temperate forests in the Free State of Thuringia, central Germany. Digital terrain and canopy height models derived from airborne laser scanning data are used as reference heights. The influence of various environmental and acquisition parameters (e.g., canopy cover, terrain slope, beam type) on GEDI height metrics is assessed. The results show a consistently high accuracy of GEDI ground elevation estimates under most conditions, except for areas with steep slopes. GEDI canopy height estimates are less accurate and show a bigger influence of some of the included parameters, specifically slope, vegetation height, and beam sensitivity. A number of relatively high outliers (around 9–13% of the measurements) is present in both ground elevation and canopy height estimates, reducing the estimation precision. Still, it can be concluded that GEDI height metrics show promising results and have potential to be used as a basis for further investigations.


2019 ◽  
Vol 11 (8) ◽  
pp. 928 ◽  
Author(s):  
Tom Swinfield ◽  
Jeremy A. Lindsell ◽  
Jonathan V. Williams ◽  
Rhett D. Harrison ◽  
Agustiono ◽  
...  

Unmanned aerial vehicles are increasingly used to monitor forests. Three-dimensional models of tropical rainforest canopies can be constructed from overlapping photos using Structure from Motion (SfM), but it is often impossible to map the ground elevation directly from such data because canopy gaps are rare in rainforests. Without knowledge of the terrain elevation, it is, thus, difficult to accurately measure the canopy height or forest properties, including the recovery stage and aboveground carbon density. Working in an Indonesian ecosystem restoration landscape, we assessed how well SfM derived the estimates of the canopy height and aboveground carbon density compared with those from an airborne laser scanning (also known as LiDAR) benchmark. SfM systematically underestimated the canopy height with a mean bias of approximately 5 m. The linear models suggested that the bias increased quadratically with the top-of-canopy height for short, even-aged, stands but linearly for tall, structurally complex canopies (>10 m). The predictions based on the simple linear model were closely correlated to the field-measured heights when the approach was applied to an independent survey in a different location ( R 2 = 67% and RMSE = 1.85 m), but a negative bias of 0.89 m remained, suggesting the need to refine the model parameters with additional training data. Models that included the metrics of canopy complexity were less biased but with a reduced R 2 . The inclusion of ground control points (GCPs) was found to be important in accurately registering SfM measurements in space, which is essential if the survey requirement is to produce small-scale restoration interventions or to track changes through time. However, at the scale of several hectares, the top-of-canopy height and above-ground carbon density estimates from SfM and LiDAR were very similar even without GCPs. The ability to produce accurate top-of-canopy height and carbon stock measurements from SfM is game changing for forest managers and restoration practitioners, providing the means to make rapid, low-cost surveys over hundreds of hectares without the need for LiDAR.


2019 ◽  
Vol 49 (3) ◽  
pp. 228-236 ◽  
Author(s):  
Tomi Karjalainen ◽  
Lauri Korhonen ◽  
Petteri Packalen ◽  
Matti Maltamo

In this paper, we examine the transferability of airborne laser scanning (ALS) based models for individual-tree detection (ITD) from one ALS inventory area (A1) to two other areas (A2 and A3). All areas were located in eastern Finland less than 100 km from each other and were scanned using different ALS devices and parameters. The tree attributes of interest were diameter at breast height (Dbh), height (H), crown base height (Cbh), stem volume (V), and theoretical sawlog volume (Vlog) of Scots pine (Pinus sylvestris L.) with Dbh ≥ 16 cm. All trees were first segmented from the canopy height models, and various ALS metrics were derived for each segment. Then only the segments covering correctly detected pines were chosen for further inspection. The tree attributes were predicted using the k-nearest neighbor (k-NN) imputation. The results showed that the relative root mean square error (RMSE%) values increased for each attribute after the transfers. The RMSE% values were, for A1, A2, and A3, respectively: Dbh, 13.5%, 14.8%, and 18.1%; H, 3.2%, 5.9%, and 6.2%; Cbh, 13.3%, 15.3%, and 18.3%; V, 29.3%, 35.4%, and 39.1%; and Vlog, 38.2%, 54.4% and 51.8%. The observed values indicate that it may be possible to employ ALS-based tree-level k-NN models over different inventory areas without excessive reduction in accuracy, assuming that the tree species are known to be similar.


2015 ◽  
Vol 77 (26) ◽  
Author(s):  
Nurliyana Izzati Ishak ◽  
Md Afif Abu Bakar ◽  
Muhammad Zulkarnain Abdul Rahman ◽  
Abd Wahid Rasib ◽  
Kasturi Devi Kanniah ◽  
...  

This paper presents a novel non-destructive approach for individual tree stem and branch biomass estimation using terrestrial laser scanning data. The study area is located at the Royal Belum Reserved Forest area, Gerik, Perak. Each forest plot was designed with a circular shape and contains several scanning locations to ensure good visibility of each tree. Unique tree signage was located on trees with diameter at breast height (DBH) of 10cm and above.  Extractions of individual trees were done manually and the matching process with the field collected tree properties were relied on the tree signage and tree location as collected by total station. Individual tree stems were reconstructed based on cylinder models from which the total stem volume was calculated. Biomass of individual tree stems was calculated by multiplying stem volume with specific wood density. Biomass of individual was estimated using similar concept of tree stem with the volume estimated from alpha-hull shape. The root mean squared errors (RMSE) of estimated biomass are 50.22kg and 27.20kg for stem and branch respectively. 


Sign in / Sign up

Export Citation Format

Share Document